As the recommendation service needs to address increasingly diverse distributions, such as multi-population, multi-scenario, multitarget, and multi-interest, more and more recent works have focused on multi-distribution modeling and achieved great progress. However, most of them only consider modeling in a single multi-distribution manner, ignoring that mixed multi-distributions often coexist and form hierarchical relationships. To address these challenges, we propose a flexible modeling paradigm, named Hierarchical Multi-Distribution Network (HMDN), which efficiently models these hierarchical relationships and can seamlessly integrate with existing multi-distribution methods, such as Mixture of-Experts (MoE) and Dynamic-Weight (DW) models. Specifically, we first design a hierarchical multi-distribution representation refinement module, employing a multi-level residual quantization to obtain fine-grained hierarchical representation. Then, the refined hierarchical representation is integrated into the existing single multi-distribution models, seamlessly expanding them into mixed multi-distribution models. Experimental results on both public and industrial datasets validate the effectiveness and flexibility of HMDN.