Abstract:Rat behavior modeling goes to the heart of many scientific studies, yet the textureless body surface evades automatic analysis as it literally has no keypoints that detectors can find. The movement of the body surface, however, is a rich source of information for deciphering the rat behavior. We introduce two key contributions to automatically recover densely 3D sampled rat body surface points, passively. The first is RatDome, a novel multi-camera system for rat behavior capture, and a large-scale dataset captured with it that consists of pairs of 3D keypoints and 3D body surface points. The second is RatBodyFormer, a novel network to transform detected keypoints to 3D body surface points. RatBodyFormer is agnostic to the exact locations of the 3D body surface points in the training data and is trained with masked-learning. We experimentally validate our framework with a number of real-world experiments. Our results collectively serve as a novel foundation for automated rat behavior analysis and will likely have far-reaching implications for biomedical and neuroscientific research.
Abstract:We present a novel appearance model that simultaneously realizes explicit high-quality 3D surface mesh recovery and photorealistic novel view synthesis from sparse view samples. Our key idea is to model the underlying scene geometry Mesh as an Atlas of Charts which we render with 2D Gaussian surfels (MAtCha Gaussians). MAtCha distills high-frequency scene surface details from an off-the-shelf monocular depth estimator and refines it through Gaussian surfel rendering. The Gaussian surfels are attached to the charts on the fly, satisfying photorealism of neural volumetric rendering and crisp geometry of a mesh model, i.e., two seemingly contradicting goals in a single model. At the core of MAtCha lies a novel neural deformation model and a structure loss that preserve the fine surface details distilled from learned monocular depths while addressing their fundamental scale ambiguities. Results of extensive experimental validation demonstrate MAtCha's state-of-the-art quality of surface reconstruction and photorealism on-par with top contenders but with dramatic reduction in the number of input views and computational time. We believe MAtCha will serve as a foundational tool for any visual application in vision, graphics, and robotics that require explicit geometry in addition to photorealism. Our project page is the following: https://anttwo.github.io/matcha/
Abstract:This paper introduces a novel clothed human model that can be learned from multiview RGB videos, with a particular emphasis on recovering physically accurate body and cloth movements. Our method, Position Based Dynamic Gaussians (PBDyG), realizes ``movement-dependent'' cloth deformation via physical simulation, rather than merely relying on ``pose-dependent'' rigid transformations. We model the clothed human holistically but with two distinct physical entities in contact: clothing modeled as 3D Gaussians, which are attached to a skinned SMPL body that follows the movement of the person in the input videos. The articulation of the SMPL body also drives physically-based simulation of the clothes' Gaussians to transform the avatar to novel poses. In order to run position based dynamics simulation, physical properties including mass and material stiffness are estimated from the RGB videos through Dynamic 3D Gaussian Splatting. Experiments demonstrate that our method not only accurately reproduces appearance but also enables the reconstruction of avatars wearing highly deformable garments, such as skirts or coats, which have been challenging to reconstruct using existing methods.
Abstract:We introduce a novel method for human shape and pose recovery that can fully leverage multiple static views. We target fixed-multiview people monitoring, including elderly care and safety monitoring, in which calibrated cameras can be installed at the corners of a room or an open space but whose configuration may vary depending on the environment. Our key idea is to formulate it as neural optimization. We achieve this with HeatFormer, a neural optimizer that iteratively refines the SMPL parameters given multiview images, which is fundamentally agonistic to the configuration of views. HeatFormer realizes this SMPL parameter estimation as heat map generation and alignment with a novel transformer encoder and decoder. We demonstrate the effectiveness of HeatFormer including its accuracy, robustness to occlusion, and generalizability through an extensive set of experiments. We believe HeatFormer can serve a key role in passive human behavior modeling.
Abstract:We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering. Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions. We introduce a novel plug-in Kalman filter guided deformation field that enables accurate deformation estimation from scene observations and predictions. We use a shallow Multi-Layer Perceptron (MLP) for observations and model the motion as locally linear to calculate predictions with motion equations. To further enhance the performance of the observation MLP, we introduce regularization in the canonical space to facilitate the network's ability to learn warping for different frames. Additionally, we employ an efficient tri-plane representation for encoding the canonical space, which has been experimentally demonstrated to converge quickly with high quality. This enables us to use a shallower observation MLP, consisting of just two layers in our implementation. We conduct experiments on synthetic and real data and compare with past dynamic NeRF methods. Our KFD-NeRF demonstrates similar or even superior rendering performance within comparable computational time and achieves state-of-the-art view synthesis performance with thorough training.
Abstract:Models for monocular shape reconstruction of surfaces with diffuse reflection -- shape from shading -- ought to produce distributions of outputs, because there are fundamental mathematical ambiguities of both continuous (e.g., bas-relief) and discrete (e.g., convex/concave) varieties which are also experienced by humans. Yet, the outputs of current models are limited to point estimates or tight distributions around single modes, which prevent them from capturing these effects. We introduce a model that reconstructs a multimodal distribution of shapes from a single shading image, which aligns with the human experience of multistable perception. We train a small denoising diffusion process to generate surface normal fields from $16\times 16$ patches of synthetic images of everyday 3D objects. We deploy this model patch-wise at multiple scales, with guidance from inter-patch shape consistency constraints. Despite its relatively small parameter count and predominantly bottom-up structure, we show that multistable shape explanations emerge from this model for ''ambiguous'' test images that humans experience as being multistable. At the same time, the model produces veridical shape estimates for object-like images that include distinctive occluding contours and appear less ambiguous. This may inspire new architectures for stochastic 3D shape perception that are more efficient and better aligned with human experience.
Abstract:Can we capture shape and reflectance in stealth? Such capability would be valuable for many application domains in vision, xR, robotics, and HCI. We introduce Structured Polarization, the first depth and reflectance sensing method using patterns of polarized light (SPIDeRS). The key idea is to modulate the angle of linear polarization (AoLP) of projected light at each pixel. The use of polarization makes it invisible and lets us recover not only depth but also directly surface normals and even reflectance. We implement SPIDeRS with a liquid crystal spatial light modulator (SLM) and a polarimetric camera. We derive a novel method for robustly extracting the projected structured polarization pattern from the polarimetric object appearance. We evaluate the effectiveness of SPIDeRS by applying it to a number of real-world objects. The results show that our method successfully reconstructs object shapes of various materials and is robust to diffuse reflection and ambient light. We also demonstrate relighting using recovered surface normals and reflectance. We believe SPIDeRS opens a new avenue of polarization use in visual sensing.
Abstract:Monocular depth estimators either require explicit scale supervision through auxiliary sensors or suffer from scale ambiguity, which renders them difficult to deploy in downstream applications. A possible source of scale is the sizes of objects found in the scene, but inaccurate localization makes them difficult to exploit. In this paper, we introduce a novel scale-aware monocular depth estimation method called StableCamH that does not require any auxiliary sensor or supervision. The key idea is to exploit prior knowledge of object heights in the scene but aggregate the height cues into a single invariant measure common to all frames in a road video sequence, namely the camera height. By formulating monocular depth estimation as camera height optimization, we achieve robust and accurate unsupervised end-to-end training. To realize StableCamH, we devise a novel learning-based size prior that can directly convert car appearance into its dimensions. Extensive experiments on KITTI and Cityscapes show the effectiveness of StableCamH, its state-of-the-art accuracy compared with related methods, and its generalizability. The training framework of StableCamH can be used for any monocular depth estimation method and will hopefully become a fundamental building block for further work.
Abstract:Computer vision has long relied on two kinds of correspondences: pixel correspondences in images and 3D correspondences on object surfaces. Is there another kind, and if there is, what can they do for us? In this paper, we introduce correspondences of the third kind we call reflection correspondences and show that they can help estimate camera pose by just looking at objects without relying on the background. Reflection correspondences are point correspondences in the reflected world, i.e., the scene reflected by the object surface. The object geometry and reflectance alters the scene geometrically and radiometrically, respectively, causing incorrect pixel correspondences. Geometry recovered from each image is also hampered by distortions, namely generalized bas-relief ambiguity, leading to erroneous 3D correspondences. We show that reflection correspondences can resolve the ambiguities arising from these distortions. We introduce a neural correspondence estimator and a RANSAC algorithm that fully leverages all three kinds of correspondences for robust and accurate joint camera pose and object shape estimation just from the object appearance. The method expands the horizon of numerous downstream tasks, including camera pose estimation for appearance modeling (e.g., NeRF) and motion estimation of reflective objects (e.g., cars on the road), to name a few, as it relieves the requirement of overlapping background.
Abstract:Reflectance bounds the frequency spectrum of illumination in the object appearance. In this paper, we introduce the first stochastic inverse rendering method, which recovers the full frequency spectrum of an illumination jointly with the object reflectance from a single image. Our key idea is to solve this blind inverse problem in the reflectance map, an appearance representation invariant to the underlying geometry, by learning to reverse the image formation with a novel diffusion model which we refer to as the Diffusion Reflectance Map Network (DRMNet). Given an observed reflectance map converted and completed from the single input image, DRMNet generates a reflectance map corresponding to a perfect mirror sphere while jointly estimating the reflectance. The forward process can be understood as gradually filtering a natural illumination with lower and lower frequency reflectance and additive Gaussian noise. DRMNet learns to invert this process with two subnetworks, IllNet and RefNet, which work in concert towards this joint estimation. The network is trained on an extensive synthetic dataset and is demonstrated to generalize to real images, showing state-of-the-art accuracy on established datasets.