Abstract:Accelerating research on Large Multimodal Models (LMMs) in non-English languages is crucial for enhancing user experiences across broader populations. In this paper, we introduce JMMMU (Japanese MMMU), the first large-scale Japanese benchmark designed to evaluate LMMs on expert-level tasks based on the Japanese cultural context. To facilitate comprehensive culture-aware evaluation, JMMMU features two complementary subsets: (i) culture-agnostic (CA) subset, where the culture-independent subjects (e.g., Math) are selected and translated into Japanese, enabling one-to-one comparison with its English counterpart MMMU; and (ii) culture-specific (CS) subset, comprising newly crafted subjects that reflect Japanese cultural context. Using the CA subset, we observe performance drop in many LMMs when evaluated in Japanese, which is purely attributable to language variation. Using the CS subset, we reveal their inadequate Japanese cultural understanding. Further, by combining both subsets, we identify that some LMMs perform well on the CA subset but not on the CS subset, exposing a shallow understanding of the Japanese language that lacks depth in cultural understanding. We hope this work will not only help advance LMM performance in Japanese but also serve as a guideline to create high-standard, culturally diverse benchmarks for multilingual LMM development. The project page is https://mmmu-japanese-benchmark.github.io/JMMMU/.
Abstract:Research on food image understanding using recipe data has been a long-standing focus due to the diversity and complexity of the data. Moreover, food is inextricably linked to people's lives, making it a vital research area for practical applications such as dietary management. Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities, not only in their vast knowledge but also in their ability to handle languages naturally. While English is predominantly used, they can also support multiple languages including Japanese. This suggests that MLLMs are expected to significantly improve performance in food image understanding tasks. We fine-tuned open MLLMs LLaVA-1.5 and Phi-3 Vision on a Japanese recipe dataset and benchmarked their performance against the closed model GPT-4o. We then evaluated the content of generated recipes, including ingredients and cooking procedures, using 5,000 evaluation samples that comprehensively cover Japanese food culture. Our evaluation demonstrates that the open models trained on recipe data outperform GPT-4o, the current state-of-the-art model, in ingredient generation. Our model achieved F1 score of 0.531, surpassing GPT-4o's F1 score of 0.481, indicating a higher level of accuracy. Furthermore, our model exhibited comparable performance to GPT-4o in generating cooking procedure text.
Abstract:Based on recent advanced diffusion models, Text-to-image (T2I) generation models have demonstrated their capabilities in generating diverse and high-quality images. However, leveraging their potential for real-world content creation, particularly in providing users with precise control over the image generation result, poses a significant challenge. In this paper, we propose an innovative training-free pipeline that extends existing text-to-image generation models to incorporate a sketch as an additional condition. To generate new images with a layout and structure closely resembling the input sketch, we find that these core features of a sketch can be tracked with the cross-attention maps of diffusion models. We introduce latent optimization, a method that refines the noisy latent at each intermediate step of the generation process using cross-attention maps to ensure that the generated images closely adhere to the desired structure outlined in the reference sketch. Through latent optimization, our method enhances the fidelity and accuracy of image generation, offering users greater control and customization options in content creation.
Abstract:Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of AD, ND, OSR, OOD detection, and OD in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. In addition, we also highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection, including the discussion over other related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude this survey with open challenges and future directions.
Abstract:Manga is a popular medium that combines stylized drawings and text to convey stories. As manga panels differ from natural images, computational systems traditionally had to be designed specifically for manga. Recently, the adaptive nature of modern large multimodal models (LMMs) shows possibilities for more general approaches. To provide an analysis of the current capability of LMMs for manga understanding tasks and identifying areas for their improvement, we design and evaluate MangaUB, a novel manga understanding benchmark for LMMs. MangaUB is designed to assess the recognition and understanding of content shown in a single panel as well as conveyed across multiple panels, allowing for a fine-grained analysis of a model's various capabilities required for manga understanding. Our results show strong performance on the recognition of image content, while understanding the emotion and information conveyed across multiple panels is still challenging, highlighting future work towards LMMs for manga understanding.
Abstract:Recognizing characters and predicting speakers of dialogue are critical for comic processing tasks, such as voice generation or translation. However, because characters vary by comic title, supervised learning approaches like training character classifiers which require specific annotations for each comic title are infeasible. This motivates us to propose a novel zero-shot approach, allowing machines to identify characters and predict speaker names based solely on unannotated comic images. In spite of their importance in real-world applications, these task have largely remained unexplored due to challenges in story comprehension and multimodal integration. Recent large language models (LLMs) have shown great capability for text understanding and reasoning, while their application to multimodal content analysis is still an open problem. To address this problem, we propose an iterative multimodal framework, the first to employ multimodal information for both character identification and speaker prediction tasks. Our experiments demonstrate the effectiveness of the proposed framework, establishing a robust baseline for these tasks. Furthermore, since our method requires no training data or annotations, it can be used as-is on any comic series.
Abstract:This paper introduces a novel and significant challenge for Vision Language Models (VLMs), termed Unsolvable Problem Detection (UPD). UPD examines the VLM's ability to withhold answers when faced with unsolvable problems in the context of Visual Question Answering (VQA) tasks. UPD encompasses three distinct settings: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD). To deeply investigate the UPD problem, extensive experiments indicate that most VLMs, including GPT-4V and LLaVA-Next-34B, struggle with our benchmarks to varying extents, highlighting significant room for the improvements. To address UPD, we explore both training-free and training-based solutions, offering new insights into their effectiveness and limitations. We hope our insights, together with future efforts within the proposed UPD settings, will enhance the broader understanding and development of more practical and reliable VLMs.
Abstract:Recent advancements in the study of Neural Radiance Fields (NeRF) for dynamic scenes often involve explicit modeling of scene dynamics. However, this approach faces challenges in modeling scene dynamics in urban environments, where moving objects of various categories and scales are present. In such settings, it becomes crucial to effectively eliminate moving objects to accurately reconstruct static backgrounds. Our research introduces an innovative method, termed here as Entity-NeRF, which combines the strengths of knowledge-based and statistical strategies. This approach utilizes entity-wise statistics, leveraging entity segmentation and stationary entity classification through thing/stuff segmentation. To assess our methodology, we created an urban scene dataset masked with moving objects. Our comprehensive experiments demonstrate that Entity-NeRF notably outperforms existing techniques in removing moving objects and reconstructing static urban backgrounds, both quantitatively and qualitatively.
Abstract:In this paper, we investigate cross-lingual learning (CLL) for multilingual scene text recognition (STR). CLL transfers knowledge from one language to another. We aim to find the condition that exploits knowledge from high-resource languages for improving performance in low-resource languages. To do so, we first examine if two general insights about CLL discussed in previous works are applied to multilingual STR: (1) Joint learning with high- and low-resource languages may reduce performance on low-resource languages, and (2) CLL works best between typologically similar languages. Through extensive experiments, we show that two general insights may not be applied to multilingual STR. After that, we show that the crucial condition for CLL is the dataset size of high-resource languages regardless of the kind of high-resource languages. Our code, data, and models are available at https://github.com/ku21fan/CLL-STR.
Abstract:The initial noise image has demonstrated a significant influence on image generation, and manipulating the initial noise image can effectively increase control over the generation. All of the current generation is based only on a single initial noise drawn from a normal distribution, which may not be suited to the desired content specified by the prompt. In this research, we propose a novel approach using pre-collected, semantically-informed pixel blocks from multiple initial noises for the initial image construction to enhance control over the image generation. The inherent tendencies of these pixel blocks can easily generate specific content, thus effectively guiding the generation process towards the desired content. The pursuit of tailored initial image construction inevitably leads to deviations from the normal distribution, and our experimental results show that the diffusion model exhibits a certain degree of tolerance towards the distribution of initial images. Our approach achieves state-of-the-art performance in the training-free layout-to-image synthesis task, demonstrating the adaptability of the initial image construction in guiding the content of the generated image. Our code will be made publicly available.