Abstract:Large-scale pre-trained models (PTMs) provide remarkable zero-shot classification capability covering a wide variety of object classes. However, practical applications do not always require the classification of all kinds of objects, and leaving the model capable of recognizing unnecessary classes not only degrades overall accuracy but also leads to operational disadvantages. To mitigate this issue, we explore the selective forgetting problem for PTMs, where the task is to make the model unable to recognize only the specified classes while maintaining accuracy for the rest. All the existing methods assume "white-box" settings, where model information such as architectures, parameters, and gradients is available for training. However, PTMs are often "black-box," where information on such models is unavailable for commercial reasons or social responsibilities. In this paper, we address a novel problem of selective forgetting for black-box models, named Black-Box Forgetting, and propose an approach to the problem. Given that information on the model is unavailable, we optimize the input prompt to decrease the accuracy of specified classes through derivative-free optimization. To avoid difficult high-dimensional optimization while ensuring high forgetting performance, we propose Latent Context Sharing, which introduces common low-dimensional latent components among multiple tokens for the prompt. Experiments on four standard benchmark datasets demonstrate the superiority of our method with reasonable baselines. The code is available at https://github.com/yusukekwn/Black-Box-Forgetting.
Abstract:Measuring 3D geometric structures of indoor scenes requires dedicated depth sensors, which are not always available. Echo-based depth estimation has recently been studied as a promising alternative solution. All previous studies have assumed the use of echoes in the audible range. However, one major problem is that audible echoes cannot be used in quiet spaces or other situations where producing audible sounds is prohibited. In this paper, we consider echo-based depth estimation using inaudible ultrasonic echoes. While ultrasonic waves provide high measurement accuracy in theory, the actual depth estimation accuracy when ultrasonic echoes are used has remained unclear, due to its disadvantage of being sensitive to noise and susceptible to attenuation. We first investigate the depth estimation accuracy when the frequency of the sound source is restricted to the high-frequency band, and found that the accuracy decreased when the frequency was limited to ultrasonic ranges. Based on this observation, we propose a novel deep learning method to improve the accuracy of ultrasonic echo-based depth estimation by using audible echoes as auxiliary data only during training. Experimental results with a public dataset demonstrate that our method improves the estimation accuracy.
Abstract:Measuring 3D geometric structures of indoor scenes requires dedicated depth sensors, which are not always available. Echo-based depth estimation has recently been studied as a promising alternative solution. All previous studies have assumed the use of echoes in the audible range. However, one major problem is that audible echoes cannot be used in quiet spaces or other situations where producing audible sounds is prohibited. In this paper, we consider echo-based depth estimation using inaudible ultrasonic echoes. While ultrasonic waves provide high measurement accuracy in theory, the actual depth estimation accuracy when ultrasonic echoes are used has remained unclear, due to its disadvantage of being sensitive to noise and susceptible to attenuation. We first investigate the depth estimation accuracy when the frequency of the sound source is restricted to the high-frequency band, and found that the accuracy decreased when the frequency was limited to ultrasonic ranges. Based on this observation, we propose a novel deep learning method to improve the accuracy of ultrasonic echo-based depth estimation by using audible echoes as auxiliary data only during training. Experimental results with a public dataset demonstrate that our method improves the estimation accuracy.
Abstract:Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of AD, ND, OSR, OOD detection, and OD in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. In addition, we also highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection, including the discussion over other related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude this survey with open challenges and future directions.
Abstract:This paper introduces a novel and significant challenge for Vision Language Models (VLMs), termed Unsolvable Problem Detection (UPD). UPD examines the VLM's ability to withhold answers when faced with unsolvable problems in the context of Visual Question Answering (VQA) tasks. UPD encompasses three distinct settings: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD). To deeply investigate the UPD problem, extensive experiments indicate that most VLMs, including GPT-4V and LLaVA-Next-34B, struggle with our benchmarks to varying extents, highlighting significant room for the improvements. To address UPD, we explore both training-free and training-based solutions, offering new insights into their effectiveness and limitations. We hope our insights, together with future efforts within the proposed UPD settings, will enhance the broader understanding and development of more practical and reliable VLMs.
Abstract:Out-of-distribution (OOD) detection is critical for safety-sensitive machine learning applications and has been extensively studied, yielding a plethora of methods developed in the literature. However, most studies for OOD detection did not use pre-trained models and trained a backbone from scratch. In recent years, transferring knowledge from large pre-trained models to downstream tasks by lightweight tuning has become mainstream for training in-distribution (ID) classifiers. To bridge the gap between the practice of OOD detection and current classifiers, the unique and crucial problem is that the samples whose information networks know often come as OOD input. We consider that such data may significantly affect the performance of large pre-trained networks because the discriminability of these OOD data depends on the pre-training algorithm. Here, we define such OOD data as PT-OOD (Pre-Trained OOD) data. In this paper, we aim to reveal the effect of PT-OOD on the OOD detection performance of pre-trained networks from the perspective of pre-training algorithms. To achieve this, we explore the PT-OOD detection performance of supervised and self-supervised pre-training algorithms with linear-probing tuning, the most common efficient tuning method. Through our experiments and analysis, we find that the low linear separability of PT-OOD in the feature space heavily degrades the PT-OOD detection performance, and self-supervised models are more vulnerable to PT-OOD than supervised pre-trained models, even with state-of-the-art detection methods. To solve this vulnerability, we further propose a unique solution to large-scale pre-trained models: Leveraging powerful instance-by-instance discriminative representations of pre-trained models and detecting OOD in the feature space independent of the ID decision boundaries. The code will be available via https://github.com/AtsuMiyai/PT-OOD.
Abstract:Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge obtained from a source domain with labeled data to a target domain with unlabeled data. Owing to the lack of labeled data in the target domain and the possible presence of unknown classes, open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase. Although existing ODA approaches aim to solve the distribution shifts between the source and target domains, most methods fine-tuned ImageNet pre-trained models on the source domain with the adaptation on the target domain. Recent visual-language foundation models (VLFM), such as Contrastive Language-Image Pre-Training (CLIP), are robust to many distribution shifts and, therefore, should substantially improve the performance of ODA. In this work, we explore generic ways to adopt CLIP, a popular VLFM, for ODA. We investigate the performance of zero-shot prediction using CLIP, and then propose an entropy optimization strategy to assist the ODA models with the outputs of CLIP. The proposed approach achieves state-of-the-art results on various benchmarks, demonstrating its effectiveness in addressing the ODA problem.
Abstract:We present a novel vision-language prompt learning approach for few-shot out-of-distribution (OOD) detection. Few-shot OOD detection aims to detect OOD images from classes that are unseen during training using only a few labeled in-distribution (ID) images. While prompt learning methods such as CoOp have shown effectiveness and efficiency in few-shot ID classification, they still face limitations in OOD detection due to the potential presence of ID-irrelevant information in text embeddings. To address this issue, we introduce a new approach called Local regularized Context Optimization (LoCoOp), which performs OOD regularization that utilizes the portions of CLIP local features as OOD features during training. CLIP's local features have a lot of ID-irrelevant nuisances (e.g., backgrounds), and by learning to push them away from the ID class text embeddings, we can remove the nuisances in the ID class text embeddings and enhance the separation between ID and OOD. Experiments on the large-scale ImageNet OOD detection benchmarks demonstrate the superiority of our LoCoOp over zero-shot, fully supervised detection methods and prompt learning methods. Notably, even in a one-shot setting -- just one label per class, LoCoOp outperforms existing zero-shot and fully supervised detection methods. The code will be available via https://github.com/AtsuMiyai/LoCoOp.
Abstract:Removing out-of-distribution (OOD) images from noisy images scraped from the Internet is an important preprocessing for constructing datasets, which can be addressed by zero-shot OOD detection with vision language foundation models (CLIP). The existing zero-shot OOD detection setting does not consider the realistic case where an image has both in-distribution (ID) objects and OOD objects. However, it is important to identify such images as ID images when collecting the images of rare classes or ethically inappropriate classes that must not be missed. In this paper, we propose a novel problem setting called in-distribution (ID) detection, where we identify images containing ID objects as ID images, even if they contain OOD objects, and images lacking ID objects as OOD images. To solve this problem, we present a new approach, \textbf{G}lobal-\textbf{L}ocal \textbf{M}aximum \textbf{C}oncept \textbf{M}atching (GL-MCM), based on both global and local visual-text alignments of CLIP features, which can identify any image containing ID objects as ID images. Extensive experiments demonstrate that GL-MCM outperforms comparison methods on both multi-object datasets and single-object ImageNet benchmarks.
Abstract:Rotation is frequently listed as a candidate for data augmentation in contrastive learning but seldom provides satisfactory improvements. We argue that this is because the rotated image is always treated as either positive or negative. The semantics of an image can be rotation-invariant or rotation-variant, so whether the rotated image is treated as positive or negative should be determined based on the content of the image. Therefore, we propose a novel augmentation strategy, adaptive Positive or Negative Data Augmentation (PNDA), in which an original and its rotated image are a positive pair if they are semantically close and a negative pair if they are semantically different. To achieve PNDA, we first determine whether rotation is positive or negative on an image-by-image basis in an unsupervised way. Then, we apply PNDA to contrastive learning frameworks. Our experiments showed that PNDA improves the performance of contrastive learning. The code is available at \url{ https://github.com/AtsuMiyai/rethinking_rotation}.