Abstract:The integration of vision-language models such as CLIP and Concept Bottleneck Models (CBMs) offers a promising approach to explaining deep neural network (DNN) decisions using concepts understandable by humans, addressing the black-box concern of DNNs. While CLIP provides both explainability and zero-shot classification capability, its pre-training on generic image and text data may limit its classification accuracy and applicability to medical image diagnostic tasks, creating a transfer learning problem. To maintain explainability and address transfer learning needs, CBM methods commonly design post-processing modules after the bottleneck module. However, this way has been ineffective. This paper takes an unconventional approach by re-examining the CBM framework through the lens of its geometrical representation as a simple linear classification system. The analysis uncovers that post-CBM fine-tuning modules merely rescale and shift the classification outcome of the system, failing to fully leverage the system's learning potential. We introduce an adaptive module strategically positioned between CLIP and CBM to bridge the gap between source and downstream domains. This simple yet effective approach enhances classification performance while preserving the explainability afforded by the framework. Our work offers a comprehensive solution that encompasses the entire process, from concept discovery to model training, providing a holistic recipe for leveraging the strengths of GPT, CLIP, and CBM.
Abstract:Deep Neural Networks (DNNs) are widely used for visual classification tasks, but their complex computation process and black-box nature hinder decision transparency and interpretability. Class activation maps (CAMs) and recent variants provide ways to visually explain the DNN decision-making process by displaying 'attention' heatmaps of the DNNs. Nevertheless, the CAM explanation only offers relative attention information, that is, on an attention heatmap, we can interpret which image region is more or less important than the others. However, these regions cannot be meaningfully compared across classes, and the contribution of each region to the model's class prediction is not revealed. To address these challenges that ultimately lead to better DNN Interpretation, in this paper, we propose CAPE, a novel reformulation of CAM that provides a unified and probabilistically meaningful assessment of the contributions of image regions. We quantitatively and qualitatively compare CAPE with state-of-the-art CAM methods on CUB and ImageNet benchmark datasets to demonstrate enhanced interpretability. We also test on a cytology imaging dataset depicting a challenging Chronic Myelomonocytic Leukemia (CMML) diagnosis problem. Code is available at: https://github.com/AIML-MED/CAPE.
Abstract:Internet of Things (IoT) sensor data or readings evince variations in timestamp range, sampling frequency, geographical location, unit of measurement, etc. Such presented sequence data heterogeneity makes it difficult for traditional time series classification algorithms to perform well. Therefore, addressing the heterogeneity challenge demands learning not only the sub-patterns (local features) but also the overall pattern (global feature). To address the challenge of classifying heterogeneous IoT sensor data (e.g., categorizing sensor data types like temperature and humidity), we propose a novel deep learning model that incorporates both Convolutional Neural Network and Bi-directional Gated Recurrent Unit to learn local and global features respectively, in an end-to-end manner. Through rigorous experimentation on heterogeneous IoT sensor datasets, we validate the effectiveness of our proposed model, which outperforms recent state-of-the-art classification methods as well as several machine learning and deep learning baselines. In particular, the model achieves an average absolute improvement of 3.37% in Accuracy and 2.85% in F1-Score across datasets
Abstract:Center-based clustering has attracted significant research interest from both theory and practice. In many practical applications, input data often contain background knowledge that can be used to improve clustering results. In this work, we build on widely adopted $k$-center clustering and model its input background knowledge as must-link (ML) and cannot-link (CL) constraint sets. However, most clustering problems including $k$-center are inherently $\mathcal{NP}$-hard, while the more complex constrained variants are known to suffer severer approximation and computation barriers that significantly limit their applicability. By employing a suite of techniques including reverse dominating sets, linear programming (LP) integral polyhedron, and LP duality, we arrive at the first efficient approximation algorithm for constrained $k$-center with the best possible ratio of 2. We also construct competitive baseline algorithms and empirically evaluate our approximation algorithm against them on a variety of real datasets. The results validate our theoretical findings and demonstrate the great advantages of our algorithm in terms of clustering cost, clustering quality, and running time.
Abstract:Convolutional neural networks (CNNs) have gained significant popularity in orthopedic imaging in recent years due to their ability to solve fracture classification problems. A common criticism of CNNs is their opaque learning and reasoning process, making it difficult to trust machine diagnosis and the subsequent adoption of such algorithms in clinical setting. This is especially true when the CNN is trained with limited amount of medical data, which is a common issue as curating sufficiently large amount of annotated medical imaging data is a long and costly process. While interest has been devoted to explaining CNN learnt knowledge by visualizing network attention, the utilization of the visualized attention to improve network learning has been rarely investigated. This paper explores the effectiveness of regularizing CNN network with human-provided attention guidance on where in the image the network should look for answering clues. On two orthopedics radiographic fracture classification datasets, through extensive experiments we demonstrate that explicit human-guided attention indeed can direct correct network attention and consequently significantly improve classification performance. The development code for the proposed attention guidance is publicly available on GitHub.
Abstract:In this paper, we propose a new technique that applies automated image analysis in the area of structural corrosion monitoring and demonstrate improved efficacy compared to existing approaches. Structural corrosion monitoring is the initial step of the risk-based maintenance philosophy and depends on an engineer's assessment regarding the risk of building failure balanced against the fiscal cost of maintenance. This introduces the opportunity for human error which is further complicated when restricted to assessment using drone captured images for those areas not reachable by humans due to many background noises. The importance of this problem has promoted an active research community aiming to support the engineer through the use of artificial intelligence (AI) image analysis for corrosion detection. In this paper, we advance this area of research with the development of a framework, CorrDetector. CorrDetector uses a novel ensemble deep learning approach underpinned by convolutional neural networks (CNNs) for structural identification and corrosion feature extraction. We provide an empirical evaluation using real-world images of a complicated structure (e.g. telecommunication tower) captured by drones, a typical scenario for engineers. Our study demonstrates that the ensemble approach of \model significantly outperforms the state-of-the-art in terms of classification accuracy.