Fellow, IEEE
Abstract:Internet of Things (IoT) sensor data or readings evince variations in timestamp range, sampling frequency, geographical location, unit of measurement, etc. Such presented sequence data heterogeneity makes it difficult for traditional time series classification algorithms to perform well. Therefore, addressing the heterogeneity challenge demands learning not only the sub-patterns (local features) but also the overall pattern (global feature). To address the challenge of classifying heterogeneous IoT sensor data (e.g., categorizing sensor data types like temperature and humidity), we propose a novel deep learning model that incorporates both Convolutional Neural Network and Bi-directional Gated Recurrent Unit to learn local and global features respectively, in an end-to-end manner. Through rigorous experimentation on heterogeneous IoT sensor datasets, we validate the effectiveness of our proposed model, which outperforms recent state-of-the-art classification methods as well as several machine learning and deep learning baselines. In particular, the model achieves an average absolute improvement of 3.37% in Accuracy and 2.85% in F1-Score across datasets
Abstract:There has been a recent and rapid shift to digital learning hastened by the pandemic but also influenced by ubiquitous availability of digital tools and platforms now, making digital learning ever more accessible. An integral and one of the most difficult part of scaling digital learning and teaching is to be able to assess learner's knowledge and competency. An educator can record a lecture or create digital content that can be delivered to thousands of learners but assessing learners is extremely time consuming. In the paper, we propose an Artificial Intelligence (AI)-based solution namely VidVersityQG for generating questions automatically from pre-recorded video lectures. The solution can automatically generate different types of assessment questions (including short answer, multiple choice, true/false and fill in the blank questions) based on contextual and semantic information inferred from the videos. The proposed solution takes a human-centred approach, wherein teachers are provided the ability to modify/edit any AI generated questions. This approach encourages trust and engagement of teachers in the use and implementation of AI in education. The AI-based solution was evaluated for its accuracy in generating questions by 7 experienced teaching professionals and 117 education videos from multiple domains provided to us by our industry partner VidVersity. VidVersityQG solution showed promising results in generating high-quality questions automatically from video thereby significantly reducing the time and effort for educators in manual question generation.
Abstract:Consistency in product quality is of critical importance in manufacturing. However, achieving a target product quality typically involves balancing a large number of manufacturing attributes. Existing manufacturing practices for dealing with such complexity are driven largely based on human knowledge and experience. The prevalence of manual intervention makes it difficult to perfect manufacturing practices, underscoring the need for a data-driven solution. In this paper, we present an Industrial Internet of Things (IIoT) machine model which enables effective monitoring and control of plant machinery so as to achieve consistency in product quality. We present algorithms that can provide product quality prediction during production, and provide recommendations for machine control. Subsequently, we perform an experimental evaluation of the proposed solution using real data captured from a food processing plant. We show that the proposed algorithms can be used to predict product quality with a high degree of accuracy, thereby enabling effective production monitoring and control.
Abstract:The unprecedented growth of Internet of Things (IoT) and its applications in areas such as Smart Agriculture compels the need to devise newer ways for evaluating the quality of such applications. While existing models for application quality focus on the quality experienced by the end-user (captured using likert scale), IoT applications have minimal human involvement and rely on machine to machine communication and analytics to drive decision via actuations. In this paper, we first present a conceptual framework for the evaluation of IoT application quality. Subsequently, we propose, develop and validate via empirical evaluations a novel model for evaluating sensor data quality that is a key component in assessing IoT application quality. We present an implementation of the sensor data quality model and demonstrate how the IoT sensor data quality can be integrated with a Smart Agriculture application. Results of experimental evaluations conducted using data from a real-world testbed concludes the paper.
Abstract:In this paper, we propose a new technique that applies automated image analysis in the area of structural corrosion monitoring and demonstrate improved efficacy compared to existing approaches. Structural corrosion monitoring is the initial step of the risk-based maintenance philosophy and depends on an engineer's assessment regarding the risk of building failure balanced against the fiscal cost of maintenance. This introduces the opportunity for human error which is further complicated when restricted to assessment using drone captured images for those areas not reachable by humans due to many background noises. The importance of this problem has promoted an active research community aiming to support the engineer through the use of artificial intelligence (AI) image analysis for corrosion detection. In this paper, we advance this area of research with the development of a framework, CorrDetector. CorrDetector uses a novel ensemble deep learning approach underpinned by convolutional neural networks (CNNs) for structural identification and corrosion feature extraction. We provide an empirical evaluation using real-world images of a complicated structure (e.g. telecommunication tower) captured by drones, a typical scenario for engineers. Our study demonstrates that the ensemble approach of \model significantly outperforms the state-of-the-art in terms of classification accuracy.
Abstract:Finding an expert plays a crucial role in driving successful collaborations and speeding up high-quality research development and innovations. However, the rapid growth of scientific publications and digital expertise data makes identifying the right experts a challenging problem. Existing approaches for finding experts given a topic can be categorised into information retrieval techniques based on vector space models, document language models, and graph-based models. In this paper, we propose $\textit{ExpFinder}$, a new ensemble model for expert finding, that integrates a novel $N$-gram vector space model, denoted as $n$VSM, and a graph-based model, denoted as $\textit{$\mu$CO-HITS}$, that is a proposed variation of the CO-HITS algorithm. The key of $n$VSM is to exploit recent inverse document frequency weighting method for $N$-gram words and $\textit{ExpFinder}$ incorporates $n$VSM into $\textit{$\mu$CO-HITS}$ to achieve expert finding. We comprehensively evaluate $\textit{ExpFinder}$ on four different datasets from the academic domains in comparison with six different expert finding models. The evaluation results show that $\textit{ExpFinder}$ is a highly effective model for expert finding, substantially outperforming all the compared models in 19% to 160.2%.
Abstract:Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.
Abstract:Ontologies provide conceptual abstractions over data, in domains such as the Internet of Things, in a way that sensor data can be harvested and interpreted by people and applications. The Semantic Sensor Network (SSN) ontology is the de-facto standard for semantic representation of sensor observations and metadata, and it is used at the core of the open source platform for the Internet of Things, OpenIoT. In this paper we present a Schema Editor that provides an intuitive web interface for defining new types of sensors, and concrete instances of them, using the SSN ontology as the core model. This editor is fully integrated with the OpenIoT platform for generating virtual sensor descriptions and automating their semantic annotation and registration process.