Fellow, IEEE
Abstract:Research interest in autonomous agents is on the rise as an emerging topic. The notable achievements of Large Language Models (LLMs) have demonstrated the considerable potential to attain human-like intelligence in autonomous agents. However, the challenge lies in enabling these agents to learn, reason, and navigate uncertainties in dynamic environments. Context awareness emerges as a pivotal element in fortifying multi-agent systems when dealing with dynamic situations. Despite existing research focusing on both context-aware systems and multi-agent systems, there is a lack of comprehensive surveys outlining techniques for integrating context-aware systems with multi-agent systems. To address this gap, this survey provides a comprehensive overview of state-of-the-art context-aware multi-agent systems. First, we outline the properties of both context-aware systems and multi-agent systems that facilitate integration between these systems. Subsequently, we propose a general process for context-aware systems, with each phase of the process encompassing diverse approaches drawn from various application domains such as collision avoidance in autonomous driving, disaster relief management, utility management, supply chain management, human-AI interaction, and others. Finally, we discuss the existing challenges of context-aware multi-agent systems and provide future research directions in this field.
Abstract:There has been a recent and rapid shift to digital learning hastened by the pandemic but also influenced by ubiquitous availability of digital tools and platforms now, making digital learning ever more accessible. An integral and one of the most difficult part of scaling digital learning and teaching is to be able to assess learner's knowledge and competency. An educator can record a lecture or create digital content that can be delivered to thousands of learners but assessing learners is extremely time consuming. In the paper, we propose an Artificial Intelligence (AI)-based solution namely VidVersityQG for generating questions automatically from pre-recorded video lectures. The solution can automatically generate different types of assessment questions (including short answer, multiple choice, true/false and fill in the blank questions) based on contextual and semantic information inferred from the videos. The proposed solution takes a human-centred approach, wherein teachers are provided the ability to modify/edit any AI generated questions. This approach encourages trust and engagement of teachers in the use and implementation of AI in education. The AI-based solution was evaluated for its accuracy in generating questions by 7 experienced teaching professionals and 117 education videos from multiple domains provided to us by our industry partner VidVersity. VidVersityQG solution showed promising results in generating high-quality questions automatically from video thereby significantly reducing the time and effort for educators in manual question generation.
Abstract:Finding experts drives successful collaborations and high-quality product development in academic and research domains. To contribute to the expert finding research community, we have developed ExpFinder which is a novel ensemble model for expert finding by integrating an $N$-gram vector space model ($n$VSM) and a graph-based model ($\mu$CO-HITS). This paper provides descriptions of ExpFinder's architecture, key components, functionalities, and illustrative examples. ExpFinder is an effective and competitive model for expert finding, significantly outperforming a number of expert finding models.
Abstract:Finding an expert plays a crucial role in driving successful collaborations and speeding up high-quality research development and innovations. However, the rapid growth of scientific publications and digital expertise data makes identifying the right experts a challenging problem. Existing approaches for finding experts given a topic can be categorised into information retrieval techniques based on vector space models, document language models, and graph-based models. In this paper, we propose $\textit{ExpFinder}$, a new ensemble model for expert finding, that integrates a novel $N$-gram vector space model, denoted as $n$VSM, and a graph-based model, denoted as $\textit{$\mu$CO-HITS}$, that is a proposed variation of the CO-HITS algorithm. The key of $n$VSM is to exploit recent inverse document frequency weighting method for $N$-gram words and $\textit{ExpFinder}$ incorporates $n$VSM into $\textit{$\mu$CO-HITS}$ to achieve expert finding. We comprehensively evaluate $\textit{ExpFinder}$ on four different datasets from the academic domains in comparison with six different expert finding models. The evaluation results show that $\textit{ExpFinder}$ is a highly effective model for expert finding, substantially outperforming all the compared models in 19% to 160.2%.