Abstract:Internet of Things (IoT) sensor data or readings evince variations in timestamp range, sampling frequency, geographical location, unit of measurement, etc. Such presented sequence data heterogeneity makes it difficult for traditional time series classification algorithms to perform well. Therefore, addressing the heterogeneity challenge demands learning not only the sub-patterns (local features) but also the overall pattern (global feature). To address the challenge of classifying heterogeneous IoT sensor data (e.g., categorizing sensor data types like temperature and humidity), we propose a novel deep learning model that incorporates both Convolutional Neural Network and Bi-directional Gated Recurrent Unit to learn local and global features respectively, in an end-to-end manner. Through rigorous experimentation on heterogeneous IoT sensor datasets, we validate the effectiveness of our proposed model, which outperforms recent state-of-the-art classification methods as well as several machine learning and deep learning baselines. In particular, the model achieves an average absolute improvement of 3.37% in Accuracy and 2.85% in F1-Score across datasets
Abstract:Landslides have been a regular occurrence and an alarming threat to human life and property in the era of anthropogenic global warming. An early prediction of landslide susceptibility using a data-driven approach is a demand of time. In this study, we explored the eloquent features that best describe landslide susceptibility with state-of-the-art machine learning methods. In our study, we employed state-of-the-art machine learning algorithms including XgBoost, LR, KNN, SVM, Adaboost for landslide susceptibility prediction. To find the best hyperparameters of each individual classifier for optimized performance, we have incorporated the Grid Search method, with 10 Fold Cross-Validation. In this context, the optimized version of XgBoost outperformed all other classifiers with a Cross-validation Weighted F1 score of 94.62%. Followed by this empirical evidence, we explored the XgBoost classifier by incorporating TreeSHAP and identified eloquent features such as SLOPE, ELEVATION, TWI that complement the performance of the XGBoost classifier mostly and features such as LANDUSE, NDVI, SPI which has less effect on models performance. According to the TreeSHAP explanation of features, we selected the 9 most significant landslide causal factors out of 15. Evidently, an optimized version of XgBoost along with feature reduction by 40%, has outperformed all other classifiers in terms of popular evaluation metrics with a Cross-Validation Weighted F1 score of 95.01% on the training and AUC score of 97%.
Abstract:Breast cancer has become a symbol of tremendous concern in the modern world, as it is one of the major causes of cancer mortality worldwide. In this concern, many people are frequently screening for breast cancer in order to be identified early and avert mortality from the disease by receiving treatment. Breast Ultrasonography Images are frequently utilized by doctors to diagnose breast cancer at an early stage. However, the complex artifacts and heavily noised Breast Ultrasonography Images make detecting Breast Cancer a tough challenge. Furthermore, the ever-increasing number of patients being screened for Breast Cancer necessitates the use of automated Computer Aided Technology for high accuracy diagnosis at a cheap cost and in a short period of time. The current progress of Artificial Intelligence (AI) in the fields of Medical Image Analysis and Health Care is a boon to humanity. In this study, we have proposed a compact integrated automated pipelining framework which integrates ultrasonography image preprocessing with Simple Linear Iterative Clustering (SLIC) to tackle the complex artifact of Breast Ultrasonography Images complementing semantic segmentation with Modified U-Net leading to Breast Tumor classification with robust feature extraction using a transfer learning approach with pretrained VGG 16 model and densely connected neural network architecture. The proposed automated pipeline can be effectively implemented to assist medical practitioners in making more accurate and timely diagnoses of breast cancer.