Abstract:Word frequency is a key variable in psycholinguistics, useful for modeling human familiarity with words even in the era of large language models (LLMs). Frequency in film subtitles has proved to be a particularly good approximation of everyday language exposure. For many languages, however, film subtitles are not easily available, or are overwhelmingly translated from English. We demonstrate that frequencies extracted from carefully processed YouTube subtitles provide an approximation comparable to, and often better than, the best currently available resources. Moreover, they are available for languages for which a high-quality subtitle or speech corpus does not exist. We use YouTube subtitles to construct frequency norms for five diverse languages, Chinese, English, Indonesian, Japanese, and Spanish, and evaluate their correlation with lexical decision time, word familiarity, and lexical complexity. In addition to being strongly correlated with two psycholinguistic variables, a simple linear regression on the new frequencies achieves a new high score on a lexical complexity prediction task in English and Japanese, surpassing both models trained on film subtitle frequencies and the LLM GPT-4. Our code, the frequency lists, fastText word embeddings, and statistical language models are freely available at https://github.com/naist-nlp/tubelex.
Abstract:The grammatical knowledge of language models (LMs) is often measured using a benchmark of linguistic minimal pairs, where LMs are presented with a pair of acceptable and unacceptable sentences and required to judge which is acceptable. The existing dominant approach, however, naively calculates and compares the probabilities of paired sentences using LMs. Additionally, large language models (LLMs) have yet to be thoroughly examined in this field. We thus investigate how to make the most of LLMs' grammatical knowledge to comprehensively evaluate it. Through extensive experiments of nine judgment methods in English and Chinese, we demonstrate that a probability readout method, in-template LP, and a prompting-based method, Yes/No probability computing, achieve particularly high performance, surpassing the conventional approach. Our analysis reveals their different strengths, e.g., Yes/No probability computing is robust against token-length bias, suggesting that they harness different aspects of LLMs' grammatical knowledge. Consequently, we recommend using diverse judgment methods to evaluate LLMs comprehensively.
Abstract:k-nearest-neighbor machine translation (kNN-MT) boosts the translation quality of a pre-trained neural machine translation (NMT) model by utilizing translation examples during decoding. Translation examples are stored in a vector database, called a datastore, which contains one entry for each target token from the parallel data it is made from. Due to its size, it is computationally expensive both to construct and to retrieve examples from the datastore. In this paper, we present an efficient and extensible kNN-MT framework, knn-seq, for researchers and developers that is carefully designed to run efficiently, even with a billion-scale large datastore. knn-seq is developed as a plug-in on fairseq and easy to switch models and kNN indexes. Experimental results show that our implemented kNN-MT achieves a comparable gain to the original kNN-MT, and the billion-scale datastore construction took 2.21 hours in the WMT'19 German-to-English translation task. We publish our knn-seq as an MIT-licensed open-source project and the code is available on https://github.com/naist-nlp/knn-seq . The demo video is available on https://youtu.be/zTDzEOq80m0 .