Abstract:This paper presents Incremental Vision-Language Object Detection (IVLOD), a novel learning task designed to incrementally adapt pre-trained Vision-Language Object Detection Models (VLODMs) to various specialized domains, while simultaneously preserving their zero-shot generalization capabilities for the generalized domain. To address this new challenge, we present the Zero-interference Reparameterizable Adaptation (ZiRa), a novel method that introduces Zero-interference Loss and reparameterization techniques to tackle IVLOD without incurring additional inference costs or a significant increase in memory usage. Comprehensive experiments on COCO and ODinW-13 datasets demonstrate that ZiRa effectively safeguards the zero-shot generalization ability of VLODMs while continuously adapting to new tasks. Specifically, after training on ODinW-13 datasets, ZiRa exhibits superior performance compared to CL-DETR and iDETR, boosting zero-shot generalizability by substantial 13.91 and 8.71 AP, respectively.
Abstract:We present VisionFM, a foundation model pre-trained with 3.4 million ophthalmic images from 560,457 individuals, covering a broad range of ophthalmic diseases, modalities, imaging devices, and demography. After pre-training, VisionFM provides a foundation to foster multiple ophthalmic artificial intelligence (AI) applications, such as disease screening and diagnosis, disease prognosis, subclassification of disease phenotype, and systemic biomarker and disease prediction, with each application enhanced with expert-level intelligence and accuracy. The generalist intelligence of VisionFM outperformed ophthalmologists with basic and intermediate levels in jointly diagnosing 12 common ophthalmic diseases. Evaluated on a new large-scale ophthalmic disease diagnosis benchmark database, as well as a new large-scale segmentation and detection benchmark database, VisionFM outperformed strong baseline deep neural networks. The ophthalmic image representations learned by VisionFM exhibited noteworthy explainability, and demonstrated strong generalizability to new ophthalmic modalities, disease spectrum, and imaging devices. As a foundation model, VisionFM has a large capacity to learn from diverse ophthalmic imaging data and disparate datasets. To be commensurate with this capacity, in addition to the real data used for pre-training, we also generated and leveraged synthetic ophthalmic imaging data. Experimental results revealed that synthetic data that passed visual Turing tests, can also enhance the representation learning capability of VisionFM, leading to substantial performance gains on downstream ophthalmic AI tasks. Beyond the ophthalmic AI applications developed, validated, and demonstrated in this work, substantial further applications can be achieved in an efficient and cost-effective manner using VisionFM as the foundation.
Abstract:Class incremental learning has attracted much attention, but most existing works still continually fine-tune the representation model, resulting in much catastrophic forgetting. Instead of struggling to fight against such forgetting by replaying or distillation like most of the existing methods, we take the pre-train-and-prompt-tuning paradigm to sequentially learn new visual concepts based on a fixed semantic rich pre-trained representation model by incremental prototype prompt-tuning (IPP), which substantially reduces the catastrophic forgetting. In addition, an example prototype classification is proposed to compensate for semantic drift, the problem caused by learning bias at different phases. Extensive experiments conducted on the three incremental learning benchmarks demonstrate that our method consistently outperforms other state-of-the-art methods with a large margin.