AIRI, Skolkovo Institute of Science and Technology
Abstract:Sparse autoencoders (SAEs) are a technique for sparse decomposition of neural network activations into human-interpretable features. However, current SAEs suffer from feature absorption, where specialized features capture instances of general features creating representation holes, and feature composition, where independent features merge into composite representations. In this work, we introduce Orthogonal SAE (OrtSAE), a novel approach aimed to mitigate these issues by enforcing orthogonality between the learned features. By implementing a new training procedure that penalizes high pairwise cosine similarity between SAE features, OrtSAE promotes the development of disentangled features while scaling linearly with the SAE size, avoiding significant computational overhead. We train OrtSAE across different models and layers and compare it with other methods. We find that OrtSAE discovers 9% more distinct features, reduces feature absorption (by 65%) and composition (by 15%), improves performance on spurious correlation removal (+6%), and achieves on-par performance for other downstream tasks compared to traditional SAEs.
Abstract:Activation steering is a promising technique for controlling LLM behavior by adding semantically meaningful vectors directly into a model's hidden states during inference. It is often framed as a precise, interpretable, and potentially safer alternative to fine-tuning. We demonstrate the opposite: steering systematically breaks model alignment safeguards, making it comply with harmful requests. Through extensive experiments on different model families, we show that even steering in a random direction can increase the probability of harmful compliance from 0% to 2-27%. Alarmingly, steering benign features from a sparse autoencoder (SAE), a common source of interpretable directions, increases these rates by a further 2-4%. Finally, we show that combining 20 randomly sampled vectors that jailbreak a single prompt creates a universal attack, significantly increasing harmful compliance on unseen requests. These results challenge the paradigm of safety through interpretability, showing that precise control over model internals does not guarantee precise control over model behavior.
Abstract:The growing demand for energy-efficient, high-performance AI systems has led to increased attention on alternative computing platforms (e.g., photonic, neuromorphic) due to their potential to accelerate learning and inference. However, integrating such physical components into deep learning pipelines remains challenging, as physical devices often offer limited expressiveness, and their non-differentiable nature renders on-device backpropagation difficult or infeasible. This motivates the development of hybrid architectures that combine digital neural networks with reconfigurable physical layers, which effectively behave as black boxes. In this work, we present a framework for the end-to-end training of such hybrid networks. This framework integrates stochastic zeroth-order optimization for updating the physical layer's internal parameters with a dynamic low-rank surrogate model that enables gradient propagation through the physical layer. A key component of our approach is the implicit projector-splitting integrator algorithm, which updates the lightweight surrogate model after each forward pass with minimal hardware queries, thereby avoiding costly full matrix reconstruction. We demonstrate our method across diverse deep learning tasks, including: computer vision, audio classification, and language modeling. Notably, across all modalities, the proposed approach achieves near-digital baseline accuracy and consistently enables effective end-to-end training of hybrid models incorporating various non-differentiable physical components (spatial light modulators, microring resonators, and Mach-Zehnder interferometers). This work bridges hardware-aware deep learning and gradient-free optimization, thereby offering a practical pathway for integrating non-differentiable physical components into scalable, end-to-end trainable AI systems.
Abstract:This paper evaluates geopolitical biases in LLMs with respect to various countries though an analysis of their interpretation of historical events with conflicting national perspectives (USA, UK, USSR, and China). We introduce a novel dataset with neutral event descriptions and contrasting viewpoints from different countries. Our findings show significant geopolitical biases, with models favoring specific national narratives. Additionally, simple debiasing prompts had a limited effect in reducing these biases. Experiments with manipulated participant labels reveal models' sensitivity to attribution, sometimes amplifying biases or recognizing inconsistencies, especially with swapped labels. This work highlights national narrative biases in LLMs, challenges the effectiveness of simple debiasing methods, and offers a framework and dataset for future geopolitical bias research.
Abstract:Large language models (LLMs) excel at reasoning, yet post-training remains critical for aligning their behavior with task goals. Existing reinforcement learning (RL) methods often depend on costly human annotations or external reward models. We propose Reinforcement Learning via Self-Confidence (RLSC), which uses the model's own confidence as reward signals-eliminating the need for labels, preference models, or reward engineering. Applied to Qwen2.5-Math-7B with only 8 samples per question and 4 training epochs, RLSC improves accuracy by +20.10% on AIME2024, +49.40% on MATH500, and +52.50% on AMC23. RLSC offers a simple, scalable post-training method for reasoning models with minimal supervision.
Abstract:We present a new viewpoint on a reconstructing multidimensional geological fields from sparse observations. Drawing inspiration from deterministic image inpainting techniques, we model a partially observed spatial field as a multidimensional tensor and recover missing values by enforcing a global low-rank structure. Our approach combines ideas from tensor completion and geostatistics, providing a robust optimization framework. Experiments on synthetic geological fields demonstrate that used tensor completion method significant improvements in reconstruction accuracy over ordinary kriging for various percent of observed data.
Abstract:Transformer models struggle with long-context inference due to their quadratic time and linear memory complexity. Recurrent Memory Transformers (RMTs) offer a solution by reducing the asymptotic cost to linear time and constant memory usage. However, their memory update mechanism leads to sequential execution, causing a performance bottleneck. We introduce Diagonal Batching, a scheduling scheme that unlocks parallelism across segments in RMTs while preserving exact recurrence. This approach eliminates the sequential constraint, enabling efficient GPU inference even for single long-context inputs without complex batching and pipelining techniques. Because the technique is purely a run-time computation reordering, existing RMT models adopt it with no retraining. Applied to a LLaMA-1B ARMT model, Diagonal Batching yields a 3.3x speedup over standard full-attention LLaMA-1B and a 1.8x speedup over the sequential RMT implementation on 131,072-token sequences. By removing sequential bottleneck, Diagonal Batching reduces inference cost and latency, thereby strengthening RMTs as a practical solution for real-world, long-context applications.
Abstract:Sliced Mutual Information (SMI) is widely used as a scalable alternative to mutual information for measuring non-linear statistical dependence. Despite its advantages, such as faster convergence, robustness to high dimensionality, and nullification only under statistical independence, we demonstrate that SMI is highly susceptible to data manipulation and exhibits counterintuitive behavior. Through extensive benchmarking and theoretical analysis, we show that SMI saturates easily, fails to detect increases in statistical dependence (even under linear transformations designed to enhance the extraction of information), prioritizes redundancy over informative content, and in some cases, performs worse than simpler dependence measures like the correlation coefficient.
Abstract:In-context learning (ICL) enables Large Language Models (LLMs) to adapt to new tasks using few examples, with task vectors - specific hidden state activations - hypothesized to encode task information. Existing studies are limited by small-scale benchmarks, restricting comprehensive analysis. We introduce QuiteAFew, a novel dataset of 3,096 diverse few-shot tasks, each with 30 input-output pairs derived from the Alpaca dataset. Experiments with Llama-3-8B on QuiteAFew reveal: (1) task vector performance peaks at an intermediate layer (e.g., 15th), (2) effectiveness varies significantly by task type, and (3) complex tasks rely on multiple, subtask-specific vectors rather than a single vector, suggesting distributed task knowledge representation.
Abstract:A recent study showed that large language models (LLMs) can reconstruct surprisingly long texts - up to thousands of tokens - via autoregressive generation from just one specially trained input embedding. In this work, we explore whether such reconstruction is possible without autoregression. We show that frozen LLMs can generate hundreds of accurate tokens in just one forward pass, when provided with only two learned embeddings. This reveals a surprising and underexplored capability of LLMs - multi-token generation without iterative decoding. We investigate the behaviour of these embeddings and provide insight into the type of information they encode. We also empirically show that although these representations are not unique for a given text, they form connected and local regions in embedding space - a property that suggests the potential of learning a dedicated encoder into that space.