Skolkovo Institute of Science and Technology
Abstract:Non-autoregressive language models are emerging as effective alternatives to autoregressive models in the field of natural language processing, facilitating simultaneous token generation. This study introduces a novel flow matching approach that employs Kullback-Leibler (KL) divergence geodesics to interpolate between initial and target distributions for discrete sequences. We formulate a loss function designed to maximize the conditional likelihood of discrete tokens and demonstrate that its maximizer corresponds to the flow matching velocity during logit interpolation. Although preliminary experiments conducted on the TinyStories dataset yielded suboptimal results, we propose an empirical sampling scheme based on a pretrained denoiser that significantly enhances performance. Additionally, we present a more general hybrid approach that achieves strong performance on more complex datasets, such as Fine Web and Lamini Instruction.
Abstract:Machine Unlearning (MU) is critical for enhancing privacy and security in deep learning models, particularly in large multimodal language models (MLLMs), by removing specific private or hazardous information. While MU has made significant progress in textual and visual modalities, multimodal unlearning (MMU) remains significantly underexplored, partially due to the absence of a suitable open-source benchmark. To address this, we introduce CLEAR, a new benchmark designed to evaluate MMU methods. CLEAR contains 200 fictitious individuals and 3,700 images linked with corresponding question-answer pairs, enabling a thorough evaluation across modalities. We assess 10 MU methods, adapting them for MMU, and highlight new challenges specific to multimodal forgetting. We also demonstrate that simple $\ell_1$ regularization on LoRA weights significantly mitigates catastrophic forgetting, preserving model performance on retained data. The dataset is available at https://huggingface.co/datasets/therem/CLEAR
Abstract:We propose a new model for multi-token prediction in transformers, aiming to enhance sampling efficiency without compromising accuracy. Motivated by recent work that predicts the probabilities of subsequent tokens using multiple heads, we connect this approach to rank-$1$ canonical tensor decomposition. By generalizing it to a rank-$r$ canonical probability decomposition, we develop an improved model that predicts multiple tokens simultaneously. This model can also be interpreted as a mixture of experts, allowing us to leverage successful techniques from that domain for efficient and robust training. Importantly, the overall overhead for training and sampling remains low. Our method demonstrates significant improvements in inference speed for both text and code generation tasks, proving particularly beneficial within the self-speculative decoding paradigm. It maintains its effectiveness across various model sizes and training epochs, highlighting its robustness and scalability.
Abstract:The performance of Transformer models has been enhanced by increasing the number of parameters and the length of the processed text. Consequently, fine-tuning the entire model becomes a memory-intensive process. High-performance methods for parameter-efficient fine-tuning (PEFT) typically work with Attention blocks and often overlook MLP blocks, which contain about half of the model parameters. We propose a new selective PEFT method, namely SparseGrad, that performs well on MLP blocks. We transfer layer gradients to a space where only about 1\% of the layer's elements remain significant. By converting gradients into a sparse structure, we reduce the number of updated parameters. We apply SparseGrad to fine-tune BERT and RoBERTa for the NLU task and LLaMa-2 for the Question-Answering task. In these experiments, with identical memory requirements, our method outperforms LoRA and MeProp, robust popular state-of-the-art PEFT approaches.
Abstract:Nearest-neighbor search in large vector databases is crucial for various machine learning applications. This paper introduces a novel method using tensor-train (TT) low-rank tensor decomposition to efficiently represent point clouds and enable fast approximate nearest-neighbor searches. We propose a probabilistic interpretation and utilize density estimation losses like Sliced Wasserstein to train TT decompositions, resulting in robust point cloud compression. We reveal an inherent hierarchical structure within TT point clouds, facilitating efficient approximate nearest-neighbor searches. In our paper, we provide detailed insights into the methodology and conduct comprehensive comparisons with existing methods. We demonstrate its effectiveness in various scenarios, including out-of-distribution (OOD) detection problems and approximate nearest-neighbor (ANN) search tasks.
Abstract:In this paper, we propose to use Sinc interpolation in the context of Kolmogorov-Arnold Networks, neural networks with learnable activation functions, which recently gained attention as alternatives to multilayer perceptron. Many different function representations have already been tried, but we show that Sinc interpolation proposes a viable alternative, since it is known in numerical analysis to represent well both smooth functions and functions with singularities. This is important not only for function approximation but also for the solutions of partial differential equations with physics-informed neural networks. Through a series of experiments, we show that SincKANs provide better results in almost all of the examples we have considered.
Abstract:Scalability issue plays a crucial role in productionizing modern recommender systems. Even lightweight architectures may suffer from high computational overload due to intermediate calculations, limiting their practicality in real-world applications. Specifically, applying full Cross-Entropy (CE) loss often yields state-of-the-art performance in terms of recommendations quality. Still, it suffers from excessive GPU memory utilization when dealing with large item catalogs. This paper introduces a novel Scalable Cross-Entropy (SCE) loss function in the sequential learning setup. It approximates the CE loss for datasets with large-size catalogs, enhancing both time efficiency and memory usage without compromising recommendations quality. Unlike traditional negative sampling methods, our approach utilizes a selective GPU-efficient computation strategy, focusing on the most informative elements of the catalog, particularly those most likely to be false positives. This is achieved by approximating the softmax distribution over a subset of the model outputs through the maximum inner product search. Experimental results on multiple datasets demonstrate the effectiveness of SCE in reducing peak memory usage by a factor of up to 100 compared to the alternatives, retaining or even exceeding their metrics values. The proposed approach also opens new perspectives for large-scale developments in different domains, such as large language models.
Abstract:We propose a self-supervised model producing 3D anatomical positional embeddings (APE) of individual medical image voxels. APE encodes voxels' anatomical closeness, i.e., voxels of the same organ or nearby organs always have closer positional embeddings than the voxels of more distant body parts. In contrast to the existing models of anatomical positional embeddings, our method is able to efficiently produce a map of voxel-wise embeddings for a whole volumetric input image, which makes it an optimal choice for different downstream applications. We train our APE model on 8400 publicly available CT images of abdomen and chest regions. We demonstrate its superior performance compared with the existing models on anatomical landmark retrieval and weakly-supervised few-shot localization of 13 abdominal organs. As a practical application, we show how to cheaply train APE to crop raw CT images to different anatomical regions of interest with 0.99 recall, while reducing the image volume by 10-100 times. The code and the pre-trained APE model are available at https://github.com/mishgon/ape .
Abstract:With growing investigations into solving partial differential equations by physics-informed neural networks (PINNs), more accurate and efficient PINNs are required to meet the practical demands of scientific computing. One bottleneck of current PINNs is computing the high-order derivatives via automatic differentiation which often necessitates substantial computing resources. In this paper, we focus on removing the automatic differentiation of the spatial derivatives and propose a spectral-based neural network that substitutes the differential operator with a multiplication. Compared to the PINNs, our approach requires lower memory and shorter training time. Thanks to the exponential convergence of the spectral basis, our approach is more accurate. Moreover, to handle the different situations between physics domain and spectral domain, we provide two strategies to train networks by their spectral information. Through a series of comprehensive experiments, We validate the aforementioned merits of our proposed network.
Abstract:Scalability is a major challenge in modern recommender systems. In sequential recommendations, full Cross-Entropy (CE) loss achieves state-of-the-art recommendation quality but consumes excessive GPU memory with large item catalogs, limiting its practicality. Using a GPU-efficient locality-sensitive hashing-like algorithm for approximating large tensor of logits, this paper introduces a novel RECE (REduced Cross-Entropy) loss. RECE significantly reduces memory consumption while allowing one to enjoy the state-of-the-art performance of full CE loss. Experimental results on various datasets show that RECE cuts training peak memory usage by up to 12 times compared to existing methods while retaining or exceeding performance metrics of CE loss. The approach also opens up new possibilities for large-scale applications in other domains.