Abstract:While federated learning leverages distributed client resources, it faces challenges due to heterogeneous client capabilities. This necessitates allocating models suited to clients' resources and careful parameter aggregation to accommodate this heterogeneity. We propose HypeMeFed, a novel federated learning framework for supporting client heterogeneity by combining a multi-exit network architecture with hypernetwork-based model weight generation. This approach aligns the feature spaces of heterogeneous model layers and resolves per-layer information disparity during weight aggregation. To practically realize HypeMeFed, we also propose a low-rank factorization approach to minimize computation and memory overhead associated with hypernetworks. Our evaluations on a real-world heterogeneous device testbed indicate that HypeMeFed enhances accuracy by 5.12% over FedAvg, reduces the hypernetwork memory requirements by 98.22%, and accelerates its operations by 1.86 times compared to a naive hypernetwork approach. These results demonstrate HypeMeFed's effectiveness in leveraging and engaging heterogeneous clients for federated learning.
Abstract:Computer vision applications predict on digital images acquired by a camera from physical scenes through light. However, conventional robustness benchmarks rely on perturbations in digitized images, diverging from distribution shifts occurring in the image acquisition process. To bridge this gap, we introduce a new distribution shift dataset, ImageNet-ES, comprising variations in environmental and camera sensor factors by directly capturing 202k images with a real camera in a controllable testbed. With the new dataset, we evaluate out-of-distribution (OOD) detection and model robustness. We find that existing OOD detection methods do not cope with the covariate shifts in ImageNet-ES, implying that the definition and detection of OOD should be revisited to embrace real-world distribution shifts. We also observe that the model becomes more robust in both ImageNet-C and -ES by learning environment and sensor variations in addition to existing digital augmentations. Lastly, our results suggest that effective shift mitigation via camera sensor control can significantly improve performance without increasing model size. With these findings, our benchmark may aid future research on robustness, OOD, and camera sensor control for computer vision. Our code and dataset are available at https://github.com/Edw2n/ImageNet-ES.
Abstract:Obstructive sleep apnea (OSA) is a prevalent sleep disorder affecting approximately one billion people world-wide. The current gold standard for diagnosing OSA, Polysomnography (PSG), involves an overnight hospital stay with multiple attached sensors, leading to potential inaccuracies due to the first-night effect. To address this, we present SlAction, a non-intrusive OSA detection system for daily sleep environments using infrared videos. Recognizing that sleep videos exhibit minimal motion, this work investigates the fundamental question: "Are respiratory events adequately reflected in human motions during sleep?" Analyzing the largest sleep video dataset of 5,098 hours, we establish correlations between OSA events and human motions during sleep. Our approach uses a low frame rate (2.5 FPS), a large size (60 seconds) and step (30 seconds) for sliding window analysis to capture slow and long-term motions related to OSA. Furthermore, we utilize a lightweight deep neural network for resource-constrained devices, ensuring all video streams are processed locally without compromising privacy. Evaluations show that SlAction achieves an average F1 score of 87.6% in detecting OSA across various environments. Implementing SlAction on NVIDIA Jetson Nano enables real-time inference (~3 seconds for a 60-second video clip), highlighting its potential for early detection and personalized treatment of OSA.
Abstract:Semi-supervised Learning (SSL) has received increasing attention in autonomous driving to relieve enormous burden for 3D annotation. In this paper, we propose UpCycling, a novel SSL framework for 3D object detection with zero additional raw-level point cloud: learning from unlabeled de-identified intermediate features (i.e., smashed data) for privacy preservation. The intermediate features do not require additional computation on autonomous vehicles since they are naturally produced by the inference pipeline. However, augmenting 3D scenes at a feature level turns out to be a critical issue: applying the augmentation methods in the latest semi-supervised 3D object detectors distorts intermediate features, which causes the pseudo-labels to suffer from significant noise. To solve the distortion problem while achieving highly effective SSL, we introduce hybrid pseudo labels, feature-level Ground Truth sampling (F-GT) and Rotation (F-RoT), which safely augment unlabeled multi-type 3D scene features and provide high-quality supervision. We implement UpCycling on two representative 3D object detection models, SECOND-IoU and PV-RCNN, and perform experiments on widely-used datasets (Waymo, KITTI, and Lyft). While preserving privacy with zero raw-point scene, UpCycling significantly outperforms the state-of-the-art SSL methods that utilize raw-point scenes, in both domain adaptation and partial-label scenarios.
Abstract:Deep neural network quantization with adaptive bitwidths has gained increasing attention due to the ease of model deployment on various platforms with different resource budgets. In this paper, we propose a meta-learning approach to achieve this goal. Specifically, we propose MEBQAT, a simple yet effective way of bitwidth-adaptive quantization aware training (QAT) where meta-learning is effectively combined with QAT by redefining meta-learning tasks to incorporate bitwidths. After being deployed on a platform, MEBQAT allows the (meta-)trained model to be quantized to any candidate bitwidth then helps to conduct inference without much accuracy drop from quantization. Moreover, with a few-shot learning scenario, MEBQAT can also adapt a model to any bitwidth as well as any unseen target classes by adding conventional optimization or metric-based meta-learning. We design variants of MEBQAT to support both (1) a bitwidth-adaptive quantization scenario and (2) a new few-shot learning scenario where both quantization bitwidths and target classes are jointly adapted. We experimentally demonstrate their validity in multiple QAT schemes. By comparing their performance to (bitwidth-dedicated) QAT, existing bitwidth adaptive QAT and vanilla meta-learning, we find that merging bitwidths into meta-learning tasks achieves a higher level of robustness.
Abstract:With the increasing computing power of edge devices, Federated Learning (FL) emerges to enable model training without privacy concerns. The majority of existing studies assume the data are fully labeled on the client side. In practice, however, the amount of labeled data is often limited. Recently, federated semi-supervised learning (FSSL) is explored as a way to effectively utilize unlabeled data during training. In this work, we propose ProtoFSSL, a novel FSSL approach based on prototypical networks. In ProtoFSSL, clients share knowledge with each other via lightweight prototypes, which prevents the local models from diverging. For computing loss on unlabeled data, each client creates accurate pseudo-labels based on shared prototypes. Jointly with labeled data, the pseudo-labels provide training signals for local prototypes. Compared to a FSSL approach based on weight sharing, the prototype-based inter-client knowledge sharing significantly reduces both communication and computation costs, enabling more frequent knowledge sharing between more clients for better accuracy. In multiple datasets, ProtoFSSL results in higher accuracy compared to the recent FSSL methods with and without knowledge sharing, such as FixMatch, FedRGD, and FedMatch. On SVHN dataset, ProtoFSSL performs comparably to fully supervised FL methods.
Abstract:Personalized Federated Learning (FL) is an emerging research field in FL that learns an easily adaptable global model in the presence of data heterogeneity among clients. However, one of the main challenges for personalized FL is the heavy reliance on clients' computing resources to calculate higher-order gradients since client data is segregated from the server to ensure privacy. To resolve this, we focus on a problem setting where the server may possess its own data independent of clients' data -- a prevalent problem setting in various applications, yet relatively unexplored in existing literature. Specifically, we propose FedSIM, a new method for personalized FL that actively utilizes such server data to improve meta-gradient calculation in the server for increased personalization performance. Experimentally, we demonstrate through various benchmarks and ablations that FedSIM is superior to existing methods in terms of accuracy, more computationally efficient by calculating the full meta-gradients in the server, and converges up to 34.2% faster.