Abstract:Memory Editing (ME) has emerged as an efficient method to modify erroneous facts or inject new facts into Large Language Models (LLMs). Two mainstream ME methods exist: parameter-modifying ME and parameter-preserving ME (integrating extra modules while preserving original parameters). Regrettably, previous studies on ME evaluation have two critical limitations: (i) evaluating LLMs with single edit only, neglecting the need for continuous editing, and (ii) evaluations focusing solely on basic factual triples, overlooking broader LLM capabilities like logical reasoning and reading understanding. This study addresses these limitations with contributions threefold: (i) We explore how ME affects a wide range of fundamental capabilities of LLMs under sequential editing. Experimental results reveal an intriguing phenomenon: Most parameter-modifying ME consistently degrade performance across all tasks after a few sequential edits. In contrast, parameter-preserving ME effectively maintains LLMs' fundamental capabilities but struggles to accurately recall edited knowledge presented in a different format. (ii) We extend our evaluation to different editing settings, such as layers to edit, model size, instruction tuning, etc. Experimental findings indicate several strategies that can potentially mitigate the adverse effects of ME. (iii) We further explain why parameter-modifying ME damages LLMs from three dimensions: parameter changes after editing, language modeling capability, and the in-context learning capability. Our in-depth study advocates more careful use of ME in real-world scenarios.
Abstract:Cross-modal Steganography is the practice of concealing secret signals in publicly available cover signals (distinct from the modality of the secret signals) unobtrusively. While previous approaches primarily concentrated on concealing a relatively small amount of information, we propose THInImg, which manages to hide lengthy audio data (and subsequently decode talking head video) inside an identity image by leveraging the properties of human face, which can be effectively utilized for covert communication, transmission and copyright protection. THInImg consists of two parts: the encoder and decoder. Inside the encoder-decoder pipeline, we introduce a novel architecture that substantially increase the capacity of hiding audio in images. Moreover, our framework can be extended to iteratively hide multiple audio clips into an identity image, offering multiple levels of control over permissions. We conduct extensive experiments to prove the effectiveness of our method, demonstrating that THInImg can present up to 80 seconds of high quality talking-head video (including audio) in an identity image with 160x160 resolution.