Goethe University Frankfurt
Abstract:In contrast to human vision, artificial neural networks (ANNs) remain relatively susceptible to adversarial attacks. To address this vulnerability, efforts have been made to transfer inductive bias from human brains to ANNs, often by training the ANN representations to match their biological counterparts. Previous works relied on brain data acquired in rodents or primates using invasive techniques, from specific regions of the brain, under non-natural conditions (anesthetized animals), and with stimulus datasets lacking diversity and naturalness. In this work, we explored whether aligning model representations to human EEG responses to a rich set of real-world images increases robustness to ANNs. Specifically, we trained ResNet50-backbone models on a dual task of classification and EEG prediction; and evaluated their EEG prediction accuracy and robustness to adversarial attacks. We observed significant correlation between the networks' EEG prediction accuracy, often highest around 100 ms post stimulus onset, and their gains in adversarial robustness. Although effect size was limited, effects were consistent across different random initializations and robust for architectural variants. We further teased apart the data from individual EEG channels and observed strongest contribution from electrodes in the parieto-occipital regions. The demonstrated utility of human EEG for such tasks opens up avenues for future efforts that scale to larger datasets under diverse stimuli conditions with the promise of stronger effects.
Abstract:We introduce Foveation-based Explanations (FovEx), a novel human-inspired visual explainability (XAI) method for Deep Neural Networks. Our method achieves state-of-the-art performance on both transformer (on 4 out of 5 metrics) and convolutional models (on 3 out of 5 metrics), demonstrating its versatility. Furthermore, we show the alignment between the explanation map produced by FovEx and human gaze patterns (+14\% in NSS compared to RISE, +203\% in NSS compared to gradCAM), enhancing our confidence in FovEx's ability to close the interpretation gap between humans and machines.
Abstract:Explainability in artificial intelligence (XAI) remains a crucial aspect for fostering trust and understanding in machine learning models. Current visual explanation techniques, such as gradient-based or class-activation-based methods, often exhibit a strong dependence on specific model architectures. Conversely, perturbation-based methods, despite being model-agnostic, are computationally expensive as they require evaluating models on a large number of forward passes. In this work, we introduce Foveation-based Explanations (FovEx), a novel XAI method inspired by human vision. FovEx seamlessly integrates biologically inspired perturbations by iteratively creating foveated renderings of the image and combines them with gradient-based visual explorations to determine locations of interest efficiently. These locations are selected to maximize the performance of the model to be explained with respect to the downstream task and then combined to generate an attribution map. We provide a thorough evaluation with qualitative and quantitative assessments on established benchmarks. Our method achieves state-of-the-art performance on both transformers (on 4 out of 5 metrics) and convolutional models (on 3 out of 5 metrics), demonstrating its versatility among various architectures. Furthermore, we show the alignment between the explanation map produced by FovEx and human gaze patterns (+14\% in NSS compared to RISE, +203\% in NSS compared to GradCAM). This comparison enhances our confidence in FovEx's ability to close the interpretation gap between humans and machines.
Abstract:In this paper, we present our first proposal of a machine learning system for the classification of freshwater snails of the genus \emph{Radomaniola}. We elaborate on the specific challenges encountered during system design, and how we tackled them; namely a small, very imbalanced dataset with a high number of classes and high visual similarity between classes. We then show how we employed triplet networks and the multiple input modalities of images, measurements, and genetic information to overcome these challenges and reach a performance comparable to that of a trained domain expert.
Abstract:Inner Interpretability is a promising emerging field tasked with uncovering the inner mechanisms of AI systems, though how to develop these mechanistic theories is still much debated. Moreover, recent critiques raise issues that question its usefulness to advance the broader goals of AI. However, it has been overlooked that these issues resemble those that have been grappled with in another field: Cognitive Neuroscience. Here we draw the relevant connections and highlight lessons that can be transferred productively between fields. Based on these, we propose a general conceptual framework and give concrete methodological strategies for building mechanistic explanations in AI inner interpretability research. With this conceptual framework, Inner Interpretability can fend off critiques and position itself on a productive path to explain AI systems.
Abstract:Machine learning is a rapidly evolving field with a wide range of applications, including biological signal analysis, where novel algorithms often improve the state-of-the-art. However, robustness to algorithmic variability - measured by different algorithms, consistently uncovering similar findings - is seldom explored. In this paper we investigate whether established hypotheses in brain-age prediction from EEG research validate across algorithms. First, we surveyed literature and identified various features known to be informative for brain-age prediction. We employed diverse feature extraction techniques, processing steps, and models, and utilized the interpretative power of SHapley Additive exPlanations (SHAP) values to align our findings with the existing research in the field. Few of our models achieved state-of-the-art performance on the specific data-set we utilized. Moreover, analysis demonstrated that while most models do uncover similar patterns in the EEG signals, some variability could still be observed. Finally, a few prominent findings could only be validated using specific models. We conclude by suggesting remedies to the potential implications of this lack of robustness to model variability.
Abstract:Infants' ability to recognize and categorize objects develops gradually. The second year of life is marked by both the emergence of more semantic visual representations and a better understanding of word meaning. This suggests that language input may play an important role in shaping visual representations. However, even in suitable contexts for word learning like dyadic play sessions, caregivers utterances are sparse and ambiguous, often referring to objects that are different from the one to which the child attends. Here, we systematically investigate to what extent caregivers' utterances can nevertheless enhance visual representations. For this we propose a computational model of visual representation learning during dyadic play. We introduce a synthetic dataset of ego-centric images perceived by a toddler-agent that moves and rotates toy objects in different parts of its home environment while hearing caregivers' utterances, modeled as captions. We propose to model toddlers' learning as simultaneously aligning representations for 1) close-in-time images and 2) co-occurring images and utterances. We show that utterances with statistics matching those of real caregivers give rise to representations supporting improved category recognition. Our analysis reveals that a small decrease/increase in object-relevant naming frequencies can drastically impact the learned representations. This affects the attention on object names within an utterance, which is required for efficient visuo-linguistic alignment. Overall, our results support the hypothesis that caregivers' naming utterances can improve toddlers' visual representations.
Abstract:Single-source open-domain generalization (SS-ODG) addresses the challenge of labeled source domains with supervision during training and unlabeled novel target domains during testing. The target domain includes both known classes from the source domain and samples from previously unseen classes. Existing techniques for SS-ODG primarily focus on calibrating source-domain classifiers to identify open samples in the target domain. However, these methods struggle with visually fine-grained open-closed data, often misclassifying open samples as closed-set classes. Moreover, relying solely on a single source domain restricts the model's ability to generalize. To overcome these limitations, we propose a novel framework called SODG-Net that simultaneously synthesizes novel domains and generates pseudo-open samples using a learning-based objective, in contrast to the ad-hoc mixing strategies commonly found in the literature. Our approach enhances generalization by diversifying the styles of known class samples using a novel metric criterion and generates diverse pseudo-open samples to train a unified and confident multi-class classifier capable of handling both open and closed-set data. Extensive experimental evaluations conducted on multiple benchmarks consistently demonstrate the superior performance of SODG-Net compared to the literature.
Abstract:Despite the growing use of transformer models in computer vision, a mechanistic understanding of these networks is still needed. This work introduces a method to reverse-engineer Vision Transformers trained to solve image classification tasks. Inspired by previous research in NLP, we demonstrate how the inner representations at any level of the hierarchy can be projected onto the learned class embedding space to uncover how these networks build categorical representations for their predictions. We use our framework to show how image tokens develop class-specific representations that depend on attention mechanisms and contextual information, and give insights on how self-attention and MLP layers differentially contribute to this categorical composition. We additionally demonstrate that this method (1) can be used to determine the parts of an image that would be important for detecting the class of interest, and (2) exhibits significant advantages over traditional linear probing approaches. Taken together, our results position our proposed framework as a powerful tool for mechanistic interpretability and explainability research.
Abstract:We introduce Net2Brain, a graphical and command-line user interface toolbox for comparing the representational spaces of artificial deep neural networks (DNNs) and human brain recordings. While different toolboxes facilitate only single functionalities or only focus on a small subset of supervised image classification models, Net2Brain allows the extraction of activations of more than 600 DNNs trained to perform a diverse range of vision-related tasks (e.g semantic segmentation, depth estimation, action recognition, etc.), over both image and video datasets. The toolbox computes the representational dissimilarity matrices (RDMs) over those activations and compares them to brain recordings using representational similarity analysis (RSA), weighted RSA, both in specific ROIs and with searchlight search. In addition, it is possible to add a new data set of stimuli and brain recordings to the toolbox for evaluation. We demonstrate the functionality and advantages of Net2Brain with an example showcasing how it can be used to test hypotheses of cognitive computational neuroscience.