Abstract:In this position paper, we propose an approach for sustainable data collection in the field of optimal mix design for marble sludge reuse. Marble sludge, a calcium-rich residual from stone-cutting processes, can be repurposed by mixing it with various ingredients. However, determining the optimal mix design is challenging due to the variability in sludge composition and the costly, time-consuming nature of experimental data collection. Also, we investigate the possibility of using machine learning models using meta-learning as an optimization tool to estimate the correct quantity of stone-cutting sludge to be used in aggregates to obtain a mix design with specific mechanical properties that can be used successfully in the building industry. Our approach offers two key advantages: (i) through simulations, a large dataset can be generated, saving time and money during the data collection phase, and (ii) Utilizing machine learning models, with performance enhancement through hyper-parameter optimization via meta-learning, to estimate optimal mix designs reducing the need for extensive manual experimentation, lowering costs, minimizing environmental impact, and accelerating the processing of quarry sludge. Our idea promises to streamline the marble sludge reuse process by leveraging collective data and advanced machine learning, promoting sustainability and efficiency in the stonecutting sector.
Abstract:This study introduces the Iterative Refinement Process (IRP), a robust anomaly detection methodology designed for high-stakes industrial quality control. The IRP enhances defect detection accuracy through a cyclic data refinement strategy, iteratively removing misleading data points to improve model performance and robustness. We validate the IRP's effectiveness using two benchmark datasets, Kolektor SDD2 (KSDD2) and MVTec AD, covering a wide range of industrial products and defect types. Our experimental results demonstrate that the IRP consistently outperforms traditional anomaly detection models, particularly in environments with high noise levels. This study highlights the IRP's potential to significantly enhance anomaly detection processes in industrial settings, effectively managing the challenges of sparse and noisy data.
Abstract:In the past decade, Deep Neural Networks (DNNs) achieved state-of-the-art performance in a broad range of problems, spanning from object classification and action recognition to smart building and healthcare. The flexibility that makes DNNs such a pervasive technology comes at a price: the computational requirements preclude their deployment on most of the resource-constrained edge devices available today to solve real-time and real-world tasks. This paper introduces a novel approach to address this challenge by combining the concept of predefined sparsity with Split Computing (SC) and Early Exit (EE). In particular, SC aims at splitting a DNN with a part of it deployed on an edge device and the rest on a remote server. Instead, EE allows the system to stop using the remote server and rely solely on the edge device's computation if the answer is already good enough. Specifically, how to apply such a predefined sparsity to a SC and EE paradigm has never been studied. This paper studies this problem and shows how predefined sparsity significantly reduces the computational, storage, and energy burdens during the training and inference phases, regardless of the hardware platform. This makes it a valuable approach for enhancing the performance of SC and EE applications. Experimental results showcase reductions exceeding 4x in storage and computational complexity without compromising performance. The source code is available at https://github.com/intelligolabs/sparsity_sc_ee.
Abstract:Defect detection is the task of identifying defects in production samples. Usually, defect detection classifiers are trained on ground-truth data formed by normal samples (negative data) and samples with defects (positive data), where the latter are consistently fewer than normal samples. State-of-the-art data augmentation procedures add synthetic defect data by superimposing artifacts to normal samples to mitigate problems related to unbalanced training data. These techniques often produce out-of-distribution images, resulting in systems that learn what is not a normal sample but cannot accurately identify what a defect looks like. In this work, we introduce DIAG, a training-free Diffusion-based In-distribution Anomaly Generation pipeline for data augmentation. Unlike conventional image generation techniques, we implement a human-in-the-loop pipeline, where domain experts provide multimodal guidance to the model through text descriptions and region localization of the possible anomalies. This strategic shift enhances the interpretability of results and fosters a more robust human feedback loop, facilitating iterative improvements of the generated outputs. Remarkably, our approach operates in a zero-shot manner, avoiding time-consuming fine-tuning procedures while achieving superior performance. We demonstrate the efficacy and versatility of DIAG with respect to state-of-the-art data augmentation approaches on the challenging KSDD2 dataset, with an improvement in AP of approximately 18% when positive samples are available and 28% when they are missing. The source code is available at https://github.com/intelligolabs/DIAG.
Abstract:In this study, we show that diffusion models can be used in industrial scenarios to improve the data augmentation procedure in the context of surface defect detection. In general, defect detection classifiers are trained on ground-truth data formed by normal samples (negative data) and samples with defects (positive data), where the latter are consistently fewer than normal samples. For these reasons, state-of-the-art data augmentation procedures add synthetic defect data by superimposing artifacts to normal samples. This leads to out-of-distribution augmented data so that the classification system learns what is not a normal sample but does not know what a defect really is. We show that diffusion models overcome this situation, providing more realistic in-distribution defects so that the model can learn the defect's genuine appearance. We propose a novel approach for data augmentation that mixes out-of-distribution with in-distribution samples, which we call In&Out. The approach can deal with two data augmentation setups: i) when no defects are available (zero-shot data augmentation) and ii) when defects are available, which can be in a small number (few-shot) or a large one (full-shot). We focus the experimental part on the most challenging benchmark in the state-of-the-art, i.e., the Kolektor Surface-Defect Dataset 2, defining the new state-of-the-art classification AP score under weak supervision of .782. The code is available at https://github.com/intelligolabs/in_and_out.
Abstract:In this paper we present a technique of NLP to tackle the problem of inference relation (NLI) between pairs of sentences in a target language of choice without a language-specific training dataset. We exploit a generic translation dataset, manually translated, along with two instances of the same pre-trained model - the first to generate sentence embeddings for the source language, and the second fine-tuned over the target language to mimic the first. This technique is known as Knowledge Distillation. The model has been evaluated over machine translated Stanford NLI test dataset, machine translated Multi-Genre NLI test dataset, and manually translated RTE3-ITA test dataset. We also test the proposed architecture over different tasks to empirically demonstrate the generality of the NLI task. The model has been evaluated over the native Italian ABSITA dataset, on the tasks of Sentiment Analysis, Aspect-Based Sentiment Analysis, and Topic Recognition. We emphasise the generality and exploitability of the Knowledge Distillation technique that outperforms other methodologies based on machine translation, even though the former was not directly trained on the data it was tested over.
Abstract:Markerless Human Pose Estimation (HPE) proved its potential to support decision making and assessment in many fields of application. HPE is often preferred to traditional marker-based Motion Capture systems due to the ease of setup, portability, and affordable cost of the technology. However, the exploitation of HPE in biomedical applications is still under investigation. This review aims to provide an overview of current biomedical applications of HPE. In this paper, we examine the main features of HPE approaches and discuss whether or not those features are of interest to biomedical applications. We also identify those areas where HPE is already in use and present peculiarities and trends followed by researchers and practitioners. We include here 25 approaches to HPE and more than 40 studies of HPE applied to motor development assessment, neuromuscolar rehabilitation, and gait & posture analysis. We conclude that markerless HPE offers great potential for extending diagnosis and rehabilitation outside hospitals and clinics, toward the paradigm of remote medical care.
Abstract:We propose a solution for Active Visual Search of objects in an environment, whose 2D floor map is the only known information. Our solution has three key features that make it more plausible and robust to detector failures compared to state-of-the-art methods: (i) it is unsupervised as it does not need any training sessions. (ii) During the exploration, a probability distribution on the 2D floor map is updated according to an intuitive mechanism, while an improved belief update increases the effectiveness of the agent's exploration. (iii) We incorporate the awareness that an object detector may fail into the aforementioned probability modelling by exploiting the success statistics of a specific detector. Our solution is dubbed POMP-BE-PD (Pomcp-based Online Motion Planning with Belief by Exploration and Probabilistic Detection). It uses the current pose of an agent and an RGB-D observation to learn an optimal search policy, exploiting a POMDP solved by a Monte-Carlo planning approach. On the Active Vision Database benchmark, we increase the average success rate over all the environments by a significant 35% while decreasing the average path length by 4% with respect to competing methods. Thus, our results are state-of-the-art, even without using any training procedure.
Abstract:This work makes a substantial step in the field of split computing, i.e., how to split a deep neural network to host its early part on an embedded device and the rest on a server. So far, potential split locations have been identified exploiting uniquely architectural aspects, i.e., based on the layer sizes. Under this paradigm, the efficacy of the split in terms of accuracy can be evaluated only after having performed the split and retrained the entire pipeline, making an exhaustive evaluation of all the plausible splitting points prohibitive in terms of time. Here we show that not only the architecture of the layers does matter, but the importance of the neurons contained therein too. A neuron is important if its gradient with respect to the correct class decision is high. It follows that a split should be applied right after a layer with a high density of important neurons, in order to preserve the information flowing until then. Upon this idea, we propose Interpretable Split (I-SPLIT): a procedure that identifies the most suitable splitting points by providing a reliable prediction on how well this split will perform in terms of classification accuracy, beforehand of its effective implementation. As a further major contribution of I-SPLIT, we show that the best choice for the splitting point on a multiclass categorization problem depends also on which specific classes the network has to deal with. Exhaustive experiments have been carried out on two networks, VGG16 and ResNet-50, and three datasets, Tiny-Imagenet-200, notMNIST, and Chest X-Ray Pneumonia. The source code is available at https://github.com/vips4/I-Split.
Abstract:In this paper we focus on the problem of learning online an optimal policy for Active Visual Search (AVS) of objects in unknown indoor environments. We propose POMP++, a planning strategy that introduces a novel formulation on top of the classic Partially Observable Monte Carlo Planning (POMCP) framework, to allow training-free online policy learning in unknown environments. We present a new belief reinvigoration strategy which allows to use POMCP with a dynamically growing state space to address the online generation of the floor map. We evaluate our method on two public benchmark datasets, AVD that is acquired by real robotic platforms and Habitat ObjectNav that is rendered from real 3D scene scans, achieving the best success rate with an improvement of >10% over the state-of-the-art methods.