Abstract:In image generation, Multiple Latent Variable Generative Models (MLVGMs) employ multiple latent variables to gradually shape the final images, from global characteristics to finer and local details (e.g., StyleGAN, NVAE), emerging as powerful tools for diverse applications. Yet their generative dynamics and latent variable utilization remain only empirically observed. In this work, we propose a novel framework to systematically quantify the impact of each latent variable in MLVGMs, using Mutual Information (MI) as a guiding metric. Our analysis reveals underutilized variables and can guide the use of MLVGMs in downstream applications. With this foundation, we introduce a method for generating synthetic data for Self-Supervised Contrastive Representation Learning (SSCRL). By leveraging the hierarchical and disentangled variables of MLVGMs, and guided by the previous analysis, we apply tailored latent perturbations to produce diverse views for SSCRL, without relying on real data altogether. Additionally, we introduce a Continuous Sampling (CS) strategy, where the generator dynamically creates new samples during SSCRL training, greatly increasing data variability. Our comprehensive experiments demonstrate the effectiveness of these contributions, showing that MLVGMs' generated views compete on par with or even surpass views generated from real data. This work establishes a principled approach to understanding and exploiting MLVGMs, advancing both generative modeling and self-supervised learning.
Abstract:The fast fashion industry's insatiable demand for new styles and rapid production cycles has led to a significant environmental burden. Overproduction, excessive waste, and harmful chemicals have contributed to the negative environmental impact of the industry. To mitigate these issues, a paradigm shift that prioritizes sustainability and efficiency is urgently needed. Integrating learning-based predictive analytics into the fashion industry represents a significant opportunity to address environmental challenges and drive sustainable practices. By forecasting fashion trends and optimizing production, brands can reduce their ecological footprint while remaining competitive in a rapidly changing market. However, one of the key challenges in forecasting fashion sales is the dynamic nature of consumer preferences. Fashion is acyclical, with trends constantly evolving and resurfacing. In addition, cultural changes and unexpected events can disrupt established patterns. This problem is also known as New Fashion Products Performance Forecasting (NFPPF), and it has recently gained more and more interest in the global research landscape. Given its multidisciplinary nature, the field of NFPPF has been approached from many different angles. This comprehensive survey wishes to provide an up-to-date overview that focuses on learning-based NFPPF strategies. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow, allowing for a systematic and complete literature review. In particular, we propose the first taxonomy that covers the learning panorama for NFPPF, examining in detail the different methodologies used to increase the amount of multimodal information, as well as the state-of-the-art available datasets. Finally, we discuss the challenges and future directions.
Abstract:The fast fashion industry suffers from significant environmental impacts due to overproduction and unsold inventory. Accurately predicting sales volumes for unreleased products could significantly improve efficiency and resource utilization. However, predicting performance for entirely new items is challenging due to the lack of historical data and rapidly changing trends, and existing deterministic models often struggle with domain shifts when encountering items outside the training data distribution. The recently proposed diffusion models address this issue using a continuous-time diffusion process. This allows us to simulate how new items are adopted, reducing the impact of domain shift challenges faced by deterministic models. As a result, in this paper, we propose MDiFF: a novel two-step multimodal diffusion models-based pipeline for New Fashion Product Performance Forecasting (NFPPF). First, we use a score-based diffusion model to predict multiple future sales for different clothes over time. Then, we refine these multiple predictions with a lightweight Multi-layer Perceptron (MLP) to get the final forecast. MDiFF leverages the strengths of both architectures, resulting in the most accurate and efficient forecasting system for the fast-fashion industry at the state-of-the-art. The code can be found at https://github.com/intelligolabs/MDiFF.
Abstract:In the fast-fashion industry, overproduction and unsold inventory create significant environmental problems. Precise sales forecasts for unreleased items could drastically improve the efficiency and profits of industries. However, predicting the success of entirely new styles is difficult due to the absence of past data and ever-changing trends. Specifically, currently used deterministic models struggle with domain shifts when encountering items outside their training data. The recently proposed diffusion models address this issue using a continuous-time diffusion process. Specifically, these models enable us to predict the sales of new items, mitigating the domain shift challenges encountered by deterministic models. As a result, this paper proposes Dif4FF, a novel two-stage pipeline for New Fashion Product Performance Forecasting (NFPPF) that leverages the power of diffusion models conditioned on multimodal data related to specific clothes. Dif4FF first utilizes a multimodal score-based diffusion model to forecast multiple sales trajectories for various garments over time. The forecasts are refined using a powerful Graph Convolutional Network (GCN) architecture. By leveraging the GCN's capability to capture long-range dependencies within both the temporal and spatial data and seeking the optimal solution between these two dimensions, Dif4FF offers the most accurate and efficient forecasting system available in the literature for predicting the sales of new items. We tested Dif4FF on VISUELLE, the de facto standard for NFPPF, achieving new state-of-the-art results.
Abstract:Attackers can deliberately perturb classifiers' input with subtle noise, altering final predictions. Among proposed countermeasures, adversarial purification employs generative networks to preprocess input images, filtering out adversarial noise. In this study, we propose specific generators, defined Multiple Latent Variable Generative Models (MLVGMs), for adversarial purification. These models possess multiple latent variables that naturally disentangle coarse from fine features. Taking advantage of these properties, we autoencode images to maintain class-relevant information, while discarding and re-sampling any detail, including adversarial noise. The procedure is completely training-free, exploring the generalization abilities of pre-trained MLVGMs on the adversarial purification downstream task. Despite the lack of large models, trained on billions of samples, we show that smaller MLVGMs are already competitive with traditional methods, and can be used as foundation models. Official code released at https://github.com/SerezD/gen_adversarial.
Abstract:Existing embodied instance goal navigation tasks, driven by natural language, assume human users to provide complete and nuanced instance descriptions prior to the navigation, which can be impractical in the real world as human instructions might be brief and ambiguous. To bridge this gap, we propose a new task, Collaborative Instance Navigation (CoIN), with dynamic agent-human interaction during navigation to actively resolve uncertainties about the target instance in natural, template-free, open-ended dialogues. To address CoIN, we propose a novel method, Agent-user Interaction with UncerTainty Awareness (AIUTA), leveraging the perception capability of Vision Language Models (VLMs) and the capability of Large Language Models (LLMs). First, upon object detection, a Self-Questioner model initiates a self-dialogue to obtain a complete and accurate observation description, while a novel uncertainty estimation technique mitigates inaccurate VLM perception. Then, an Interaction Trigger module determines whether to ask a question to the user, continue or halt navigation, minimizing user input. For evaluation, we introduce CoIN-Bench, a benchmark supporting both real and simulated humans. AIUTA achieves competitive performance in instance navigation against state-of-the-art methods, demonstrating great flexibility in handling user inputs.
Abstract:In this position paper, we propose an approach for sustainable data collection in the field of optimal mix design for marble sludge reuse. Marble sludge, a calcium-rich residual from stone-cutting processes, can be repurposed by mixing it with various ingredients. However, determining the optimal mix design is challenging due to the variability in sludge composition and the costly, time-consuming nature of experimental data collection. Also, we investigate the possibility of using machine learning models using meta-learning as an optimization tool to estimate the correct quantity of stone-cutting sludge to be used in aggregates to obtain a mix design with specific mechanical properties that can be used successfully in the building industry. Our approach offers two key advantages: (i) through simulations, a large dataset can be generated, saving time and money during the data collection phase, and (ii) Utilizing machine learning models, with performance enhancement through hyper-parameter optimization via meta-learning, to estimate optimal mix designs reducing the need for extensive manual experimentation, lowering costs, minimizing environmental impact, and accelerating the processing of quarry sludge. Our idea promises to streamline the marble sludge reuse process by leveraging collective data and advanced machine learning, promoting sustainability and efficiency in the stonecutting sector.
Abstract:Ge'ez, an ancient Ethiopic script of cultural and historical significance, has been largely neglected in handwriting recognition research, hindering the digitization of valuable manuscripts. Our study addresses this gap by developing a state-of-the-art Ge'ez handwriting recognition system using Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. Our approach uses a two-stage recognition process. First, a CNN is trained to recognize individual characters, which then acts as a feature extractor for an LSTM-based system for word recognition. Our dual-stage recognition approach achieves new top scores in Ge'ez handwriting recognition, outperforming eight state-of-the-art methods, which are SVTR, ASTER, and others as well as human performance, as measured in the HHD-Ethiopic dataset work. This research significantly advances the preservation and accessibility of Ge'ez cultural heritage, with implications for historical document digitization, educational tools, and cultural preservation. The code will be released upon acceptance.
Abstract:Gaze Target Detection (GTD), i.e., determining where a person is looking within a scene from an external viewpoint, is a challenging task, particularly in 3D space. Existing approaches heavily rely on analyzing the person's appearance, primarily focusing on their face to predict the gaze target. This paper presents a novel approach to tackle this problem by utilizing the person's upper-body pose and available depth maps to extract a 3D gaze direction and employing a multi-stage or an end-to-end pipeline to predict the gazed target. When predicted accurately, the human body pose can provide valuable information about the head pose, which is a good approximation of the gaze direction, as well as the position of the arms and hands, which are linked to the activity the person is performing and the objects they are likely focusing on. Consequently, in addition to performing gaze estimation in 3D, we are also able to perform GTD simultaneously. We demonstrate state-of-the-art results on the most comprehensive publicly accessible 3D gaze target detection dataset without requiring images of the person's face, thus promoting privacy preservation in various application contexts. The code is available at https://github.com/intelligolabs/privacy-gtd-3D.
Abstract:In recent years, the development of deep learning approaches for the task of person re-identification led to impressive results. However, this comes with a limitation for industrial and practical real-world applications. Firstly, most of the existing works operate on closed-world scenarios, in which the people to re-identify (probes) are compared to a closed-set (gallery). Real-world scenarios often are open-set problems in which the gallery is not known a priori, but the number of open-set approaches in the literature is significantly lower. Secondly, challenges such as multi-camera setups, occlusions, real-time requirements, etc., further constrain the applicability of off-the-shelf methods. This work presents MICRO-TRACK, a Modular Industrial multi-Camera Re_identification and Open-set Tracking system that is real-time, scalable, and easy to integrate into existing industrial surveillance scenarios. Furthermore, we release a novel Re-ID and tracking dataset acquired in an industrial manufacturing facility, dubbed Facility-ReID, consisting of 18-minute videos captured by 8 surveillance cameras.