Abstract:The fast fashion industry suffers from significant environmental impacts due to overproduction and unsold inventory. Accurately predicting sales volumes for unreleased products could significantly improve efficiency and resource utilization. However, predicting performance for entirely new items is challenging due to the lack of historical data and rapidly changing trends, and existing deterministic models often struggle with domain shifts when encountering items outside the training data distribution. The recently proposed diffusion models address this issue using a continuous-time diffusion process. This allows us to simulate how new items are adopted, reducing the impact of domain shift challenges faced by deterministic models. As a result, in this paper, we propose MDiFF: a novel two-step multimodal diffusion models-based pipeline for New Fashion Product Performance Forecasting (NFPPF). First, we use a score-based diffusion model to predict multiple future sales for different clothes over time. Then, we refine these multiple predictions with a lightweight Multi-layer Perceptron (MLP) to get the final forecast. MDiFF leverages the strengths of both architectures, resulting in the most accurate and efficient forecasting system for the fast-fashion industry at the state-of-the-art. The code can be found at https://github.com/intelligolabs/MDiFF.
Abstract:In the fast-fashion industry, overproduction and unsold inventory create significant environmental problems. Precise sales forecasts for unreleased items could drastically improve the efficiency and profits of industries. However, predicting the success of entirely new styles is difficult due to the absence of past data and ever-changing trends. Specifically, currently used deterministic models struggle with domain shifts when encountering items outside their training data. The recently proposed diffusion models address this issue using a continuous-time diffusion process. Specifically, these models enable us to predict the sales of new items, mitigating the domain shift challenges encountered by deterministic models. As a result, this paper proposes Dif4FF, a novel two-stage pipeline for New Fashion Product Performance Forecasting (NFPPF) that leverages the power of diffusion models conditioned on multimodal data related to specific clothes. Dif4FF first utilizes a multimodal score-based diffusion model to forecast multiple sales trajectories for various garments over time. The forecasts are refined using a powerful Graph Convolutional Network (GCN) architecture. By leveraging the GCN's capability to capture long-range dependencies within both the temporal and spatial data and seeking the optimal solution between these two dimensions, Dif4FF offers the most accurate and efficient forecasting system available in the literature for predicting the sales of new items. We tested Dif4FF on VISUELLE, the de facto standard for NFPPF, achieving new state-of-the-art results.
Abstract:Attackers can deliberately perturb classifiers' input with subtle noise, altering final predictions. Among proposed countermeasures, adversarial purification employs generative networks to preprocess input images, filtering out adversarial noise. In this study, we propose specific generators, defined Multiple Latent Variable Generative Models (MLVGMs), for adversarial purification. These models possess multiple latent variables that naturally disentangle coarse from fine features. Taking advantage of these properties, we autoencode images to maintain class-relevant information, while discarding and re-sampling any detail, including adversarial noise. The procedure is completely training-free, exploring the generalization abilities of pre-trained MLVGMs on the adversarial purification downstream task. Despite the lack of large models, trained on billions of samples, we show that smaller MLVGMs are already competitive with traditional methods, and can be used as foundation models. Official code released at https://github.com/SerezD/gen_adversarial.
Abstract:Existing embodied instance goal navigation tasks, driven by natural language, assume human users to provide complete and nuanced instance descriptions prior to the navigation, which can be impractical in the real world as human instructions might be brief and ambiguous. To bridge this gap, we propose a new task, Collaborative Instance Navigation (CoIN), with dynamic agent-human interaction during navigation to actively resolve uncertainties about the target instance in natural, template-free, open-ended dialogues. To address CoIN, we propose a novel method, Agent-user Interaction with UncerTainty Awareness (AIUTA), leveraging the perception capability of Vision Language Models (VLMs) and the capability of Large Language Models (LLMs). First, upon object detection, a Self-Questioner model initiates a self-dialogue to obtain a complete and accurate observation description, while a novel uncertainty estimation technique mitigates inaccurate VLM perception. Then, an Interaction Trigger module determines whether to ask a question to the user, continue or halt navigation, minimizing user input. For evaluation, we introduce CoIN-Bench, a benchmark supporting both real and simulated humans. AIUTA achieves competitive performance in instance navigation against state-of-the-art methods, demonstrating great flexibility in handling user inputs.
Abstract:In this position paper, we propose an approach for sustainable data collection in the field of optimal mix design for marble sludge reuse. Marble sludge, a calcium-rich residual from stone-cutting processes, can be repurposed by mixing it with various ingredients. However, determining the optimal mix design is challenging due to the variability in sludge composition and the costly, time-consuming nature of experimental data collection. Also, we investigate the possibility of using machine learning models using meta-learning as an optimization tool to estimate the correct quantity of stone-cutting sludge to be used in aggregates to obtain a mix design with specific mechanical properties that can be used successfully in the building industry. Our approach offers two key advantages: (i) through simulations, a large dataset can be generated, saving time and money during the data collection phase, and (ii) Utilizing machine learning models, with performance enhancement through hyper-parameter optimization via meta-learning, to estimate optimal mix designs reducing the need for extensive manual experimentation, lowering costs, minimizing environmental impact, and accelerating the processing of quarry sludge. Our idea promises to streamline the marble sludge reuse process by leveraging collective data and advanced machine learning, promoting sustainability and efficiency in the stonecutting sector.
Abstract:Ge'ez, an ancient Ethiopic script of cultural and historical significance, has been largely neglected in handwriting recognition research, hindering the digitization of valuable manuscripts. Our study addresses this gap by developing a state-of-the-art Ge'ez handwriting recognition system using Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. Our approach uses a two-stage recognition process. First, a CNN is trained to recognize individual characters, which then acts as a feature extractor for an LSTM-based system for word recognition. Our dual-stage recognition approach achieves new top scores in Ge'ez handwriting recognition, outperforming eight state-of-the-art methods, which are SVTR, ASTER, and others as well as human performance, as measured in the HHD-Ethiopic dataset work. This research significantly advances the preservation and accessibility of Ge'ez cultural heritage, with implications for historical document digitization, educational tools, and cultural preservation. The code will be released upon acceptance.
Abstract:Gaze Target Detection (GTD), i.e., determining where a person is looking within a scene from an external viewpoint, is a challenging task, particularly in 3D space. Existing approaches heavily rely on analyzing the person's appearance, primarily focusing on their face to predict the gaze target. This paper presents a novel approach to tackle this problem by utilizing the person's upper-body pose and available depth maps to extract a 3D gaze direction and employing a multi-stage or an end-to-end pipeline to predict the gazed target. When predicted accurately, the human body pose can provide valuable information about the head pose, which is a good approximation of the gaze direction, as well as the position of the arms and hands, which are linked to the activity the person is performing and the objects they are likely focusing on. Consequently, in addition to performing gaze estimation in 3D, we are also able to perform GTD simultaneously. We demonstrate state-of-the-art results on the most comprehensive publicly accessible 3D gaze target detection dataset without requiring images of the person's face, thus promoting privacy preservation in various application contexts. The code is available at https://github.com/intelligolabs/privacy-gtd-3D.
Abstract:In recent years, the development of deep learning approaches for the task of person re-identification led to impressive results. However, this comes with a limitation for industrial and practical real-world applications. Firstly, most of the existing works operate on closed-world scenarios, in which the people to re-identify (probes) are compared to a closed-set (gallery). Real-world scenarios often are open-set problems in which the gallery is not known a priori, but the number of open-set approaches in the literature is significantly lower. Secondly, challenges such as multi-camera setups, occlusions, real-time requirements, etc., further constrain the applicability of off-the-shelf methods. This work presents MICRO-TRACK, a Modular Industrial multi-Camera Re_identification and Open-set Tracking system that is real-time, scalable, and easy to integrate into existing industrial surveillance scenarios. Furthermore, we release a novel Re-ID and tracking dataset acquired in an industrial manufacturing facility, dubbed Facility-ReID, consisting of 18-minute videos captured by 8 surveillance cameras.
Abstract:Patterns of human motion in outdoor and indoor environments are substantially different due to the scope of the environment and the typical intentions of people therein. While outdoor trajectory forecasting has received significant attention, indoor forecasting is still an underexplored research area. This paper proposes SITUATE, a novel approach to cope with indoor human trajectory prediction by leveraging equivariant and invariant geometric features and a self-supervised vision representation. The geometric learning modules model the intrinsic symmetries and human movements inherent in indoor spaces. This concept becomes particularly important because self-loops at various scales and rapid direction changes often characterize indoor trajectories. On the other hand, the vision representation module is used to acquire spatial-semantic information about the environment to predict users' future locations more accurately. We evaluate our method through comprehensive experiments on the two most famous indoor trajectory forecasting datasets, i.e., TH\"OR and Supermarket, obtaining state-of-the-art performance. Furthermore, we also achieve competitive results in outdoor scenarios, showing that indoor-oriented forecasting models generalize better than outdoor-oriented ones. The source code is available at https://github.com/intelligolabs/SITUATE.
Abstract:This study introduces the Iterative Refinement Process (IRP), a robust anomaly detection methodology designed for high-stakes industrial quality control. The IRP enhances defect detection accuracy through a cyclic data refinement strategy, iteratively removing misleading data points to improve model performance and robustness. We validate the IRP's effectiveness using two benchmark datasets, Kolektor SDD2 (KSDD2) and MVTec AD, covering a wide range of industrial products and defect types. Our experimental results demonstrate that the IRP consistently outperforms traditional anomaly detection models, particularly in environments with high noise levels. This study highlights the IRP's potential to significantly enhance anomaly detection processes in industrial settings, effectively managing the challenges of sparse and noisy data.