Abstract:Translating a general quantum circuit on a specific hardware topology with a reduced set of available gates, also known as transpilation, comes with a substantial increase in the length of the equivalent circuit. Due to decoherence, the quality of the computational outcome can degrade seriously with increasing circuit length. Thus, there is major interest to reduce a quantum circuit to an equivalent circuit which is in its gate count as short as possible. One method to address efficient transpilation is based on approaches known from stochastic optimization, e.g. by using random sampling and token replacement strategies. Here, a core challenge is that these methods can suffer from sampling efficiency, causing long and energy consuming optimization time. As a remedy, we propose in this work 2D neural guided sampling. Thus, given a 2D representation of a quantum circuit, a neural network predicts groups of gates in the quantum circuit, which are likely reducible. Thus, it leads to a sampling prior which can heavily reduce the compute time for quantum circuit reduction. In several experiments, we demonstrate that our method is superior to results obtained from different qiskit or BQSKit optimization levels.
Abstract:Understanding the robustness of deep learning models for multivariate long-term time series forecasting (M-LTSF) remains challenging, as evaluations typically rely on real-world datasets with unknown noise properties. We propose a simulation-based evaluation framework that generates parameterizable synthetic datasets, where each dataset instance corresponds to a different configuration of signal components, noise types, signal-to-noise ratios, and frequency characteristics. These configurable components aim to model real-world multivariate time series data without the ambiguity of unknown noise. This framework enables fine-grained, systematic evaluation of M-LTSF models under controlled and diverse scenarios. We benchmark four representative architectures S-Mamba (state-space), iTransformer (transformer-based), R-Linear (linear), and Autoformer (decomposition-based). Our analysis reveals that all models degrade severely when lookback windows cannot capture complete periods of seasonal patters in the data. S-Mamba and Autoformer perform best on sawtooth patterns, while R-Linear and iTransformer favor sinusoidal signals. White and Brownian noise universally degrade performance with lower signal-to-noise ratio while S-Mamba shows specific trend-noise and iTransformer shows seasonal-noise vulnerability. Further spectral analysis shows that S-Mamba and iTransformer achieve superior frequency reconstruction. This controlled approach, based on our synthetic and principle-driven testbed, offers deeper insights into model-specific strengths and limitations through the aggregation of MSE scores and provides concrete guidance for model selection based on signal characteristics and noise conditions.
Abstract:Trustworthy AI is mandatory for the broad deployment of autonomous vehicles. Although end-to-end approaches derive control commands directly from raw data, interpreting these decisions remains challenging, especially in complex urban scenarios. This is mainly attributed to very deep neural networks with non-linear decision boundaries, making it challenging to grasp the logic behind AI-driven decisions. This paper presents a method to enhance interpretability while optimizing control commands in autonomous driving. To address this, we propose loss functions that promote the interpretability of our model by generating sparse and localized feature maps. The feature activations allow us to explain which image regions contribute to the predicted control command. We conduct comprehensive ablation studies on the feature extraction step and validate our method on the CARLA benchmarks. We also demonstrate that our approach improves interpretability, which correlates with reducing infractions, yielding a safer, high-performance driving model. Notably, our monocular, non-ensemble model surpasses the top-performing approaches from the CARLA Leaderboard by achieving lower infraction scores and the highest route completion rate, all while ensuring interpretability.
Abstract:The introduction of the Segment Anything Model (SAM) has paved the way for numerous semantic segmentation applications. For several tasks, quantifying the uncertainty of SAM is of particular interest. However, the ambiguous nature of the class-agnostic foundation model SAM challenges current uncertainty quantification (UQ) approaches. This paper presents a theoretically motivated uncertainty quantification model based on a Bayesian entropy formulation jointly respecting aleatoric, epistemic, and the newly introduced task uncertainty. We use this formulation to train USAM, a lightweight post-hoc UQ method. Our model traces the root of uncertainty back to under-parameterised models, insufficient prompts or image ambiguities. Our proposed deterministic USAM demonstrates superior predictive capabilities on the SA-V, MOSE, ADE20k, DAVIS, and COCO datasets, offering a computationally cheap and easy-to-use UQ alternative that can support user-prompting, enhance semi-supervised pipelines, or balance the tradeoff between accuracy and cost efficiency.
Abstract:With more well-performing anomaly detection methods proposed, many of the single-view tasks have been solved to a relatively good degree. However, real-world production scenarios often involve complex industrial products, whose properties may not be fully captured by one single image. While normalizing flow based approaches already work well in single-camera scenarios, they currently do not make use of the priors in multi-view data. We aim to bridge this gap by using these flow-based models as a strong foundation and propose Multi-Flow, a novel multi-view anomaly detection method. Multi-Flow makes use of a novel multi-view architecture, whose exact likelihood estimation is enhanced by fusing information across different views. For this, we propose a new cross-view message-passing scheme, letting information flow between neighboring views. We empirically validate it on the real-world multi-view data set Real-IAD and reach a new state-of-the-art, surpassing current baselines in both image-wise and sample-wise anomaly detection tasks.
Abstract:This study investigates a pulsating fluid jet as a novel precise, minimally invasive and cold technique for bone cement removal. We utilize the pulsating fluid jet device to remove bone cement from samples designed to mimic clinical conditions. The effectiveness of long nozzles was tested to enable minimally invasive procedures. Audio signal monitoring, complemented by the State Space Model (SSM) S4D-Bio, was employed to optimize the fluid jet parameters dynamically, addressing challenges like visibility obstruction from splashing. Within our experiments, we generate a comprehensive dataset correlating various process parameters and their equivalent audio signals to material erosion. The use of SSMs yields precise control over the predictive erosion process, achieving 98.93 \% accuracy. The study demonstrates on the one hand, that the pulsating fluid jet device, coupled with advanced audio monitoring techniques, is a highly effective tool for precise bone cement removal. On the other hand, this study presents the first application of SSMs in biomedical surgery technology, marking a significant advancement in the application. This research significantly advances biomedical engineering by integrating machine learning combined with pulsating fluid jet as surgical technology, offering a novel, minimally invasive, cold and adaptive approach for bone cement removal in orthopedic applications.
Abstract:Predicting energy consumption in smart buildings is challenging due to dependencies in sensor data and the variability of environmental conditions. We introduce S4ConvD, a novel convolutional variant of Deep State Space Models (Deep-SSMs), that minimizes reliance on extensive preprocessing steps. S4ConvD is designed to optimize runtime in resource-constrained environments. By implementing adaptive scaling and frequency adjustments, this model shows to capture complex temporal patterns in building energy dynamics. Experiments on the ASHRAE Great Energy Predictor III dataset reveal that S4ConvD outperforms current benchmarks. Additionally, S4ConvD benefits from significant improvements in GPU runtime through the use of Block Tiling optimization techniques. Thus, S4ConvD has the potential for practical deployment in real-time energy modeling. Furthermore, the complete codebase and dataset are accessible on GitHub, fostering open-source contributions and facilitating further research. Our method also promotes resource-efficient model execution, enhancing both energy forecasting and the potential integration of renewable energy sources into smart grid systems.
Abstract:Understanding the classifications of deep neural networks, e.g. used in safety-critical situations, is becoming increasingly important. While recent models can locally explain a single decision, to provide a faithful global explanation about an accurate model's general behavior is a more challenging open task. Towards that goal, we introduce the Quadratic Programming Enhanced Model (QPM), which learns globally interpretable class representations. QPM represents every class with a binary assignment of very few, typically 5, features, that are also assigned to other classes, ensuring easily comparable contrastive class representations. This compact binary assignment is found using discrete optimization based on predefined similarity measures and interpretability constraints. The resulting optimal assignment is used to fine-tune the diverse features, so that each of them becomes the shared general concept between the assigned classes. Extensive evaluations show that QPM delivers unprecedented global interpretability across small and large-scale datasets while setting the state of the art for the accuracy of interpretable models.
Abstract:Addressing sensor drift is essential in industrial measurement systems, where precise data output is necessary for maintaining accuracy and reliability in monitoring processes, as it progressively degrades the performance of machine learning models over time. Our findings indicate that the standard cross-validation method used in existing model training overestimates performance by inadequately accounting for drift. This is primarily because typical cross-validation techniques allow data instances to appear in both training and testing sets, thereby distorting the accuracy of the predictive evaluation. As a result, these models are unable to precisely predict future drift effects, compromising their ability to generalize and adapt to evolving data conditions. This paper presents two solutions: (1) a novel sensor drift compensation learning paradigm for validating models, and (2) automated machine learning (AutoML) techniques to enhance classification performance and compensate sensor drift. By employing strategies such as data balancing, meta-learning, automated ensemble learning, hyperparameter optimization, feature selection, and boosting, our AutoML-DC (Drift Compensation) model significantly improves classification performance against sensor drift. AutoML-DC further adapts effectively to varying drift severities.
Abstract:Training deep neural networks requires datasets with a large number of annotated examples. The collection and annotation of these datasets is not only extremely expensive but also faces legal and privacy problems. These factors are a significant limitation for many real-world applications. To address this, we introduce HydraMix, a novel architecture that generates new image compositions by mixing multiple different images from the same class. HydraMix learns the fusion of the content of various images guided by a segmentation-based mixing mask in feature space and is optimized via a combination of unsupervised and adversarial training. Our data augmentation scheme allows the creation of models trained from scratch on very small datasets. We conduct extensive experiments on ciFAIR-10, STL-10, and ciFAIR-100. Additionally, we introduce a novel text-image metric to assess the generality of the augmented datasets. Our results show that HydraMix outperforms existing state-of-the-art methods for image classification on small datasets.