Abstract:In this work we explore the application of AI to robotic welding. Robotic welding is a widely used technology in many industries, but robots currently do not have the capability to detect welding defects which get introduced due to various reasons in the welding process. We describe how deep-learning methods can be applied to detect weld defects in real-time by recording the welding process with microphones and a camera. Our findings are based on a large database with more than 4000 welding samples we collected which covers different weld types, materials and various defect categories. All deep learning models are trained in an unsupervised fashion because the space of possible defects is large and the defects in our data may contain biases. We demonstrate that a reliable real-time detection of most categories of weld defects is feasible both from audio and video, with improvements achieved by combining both modalities. Specifically, the multi-modal approach achieves an average Area-under-ROC-Curve (AUC) of 0.92 over all eleven defect types in our data. We conclude the paper with an analysis of the results by defect type and a discussion of future work.
Abstract:Development of task guidance systems for aiding humans in a situated task remains a challenging problem. The role of search (information retrieval) and conversational systems for task guidance has immense potential to help the task performers achieve various goals. However, there are several technical challenges that need to be addressed to deliver such conversational systems, where common supervised approaches fail to deliver the expected results in terms of overall performance, user experience and adaptation to realistic conditions. In this preliminary work we first highlight some of the challenges involved during the development of such systems. We then provide an overview of existing datasets available and highlight their limitations. We finally develop a model-in-the-loop wizard-of-oz based data collection tool and perform a pilot experiment.
Abstract:Recent temporal action segmentation approaches need frame annotations during training to be effective. These annotations are very expensive and time-consuming to obtain. This limits their performances when only limited annotated data is available. In contrast, we can easily collect a large corpus of in-domain unannotated videos by scavenging through the internet. Thus, this paper proposes an approach for the temporal action segmentation task that can simultaneously leverage knowledge from annotated and unannotated video sequences. Our approach uses multi-stream distillation that repeatedly refines and finally combines their frame predictions. Our model also predicts the action order, which is later used as a temporal constraint while estimating frames labels to counter the lack of supervision for unannotated videos. In the end, our evaluation of the proposed approach on two different datasets demonstrates its capability to achieve comparable performance to the full supervision despite limited annotation.
Abstract:In this paper, we propose an approach that spatially localizes the activities in a video frame where each person can perform multiple activities at the same time. Our approach takes the temporal scene context as well as the relations of the actions of detected persons into account. While the temporal context is modeled by a temporal recurrent neural network (RNN), the relations of the actions are modeled by a graph RNN. Both networks are trained together and the proposed approach achieves state of the art results on the AVA dataset.
Abstract:Since collecting and annotating data for spatio-temporal action detection is very expensive, there is a need to learn approaches with less supervision. Weakly supervised approaches do not require any bounding box annotations and can be trained only from labels that indicate whether an action occurs in a video clip. Current approaches, however, cannot handle the case when there are multiple persons in a video that perform multiple actions at the same time. In this work, we address this very challenging task for the first time. We propose a baseline based on multi-instance and multi-label learning. Furthermore, we propose a novel approach that uses sets of actions as representation instead of modeling individual action classes. Since computing, the probabilities for the full power set becomes intractable as the number of action classes increases, we assign an action set to each detected person under the constraint that the assignment is consistent with the annotation of the video clip. We evaluate the proposed approach on the challenging AVA dataset where the proposed approach outperforms the MIML baseline and is competitive to fully supervised approaches.
Abstract:A group of persons can be analyzed at various semantic levels such as individual actions, their interactions, and the activity of the entire group. In this paper, we propose a structural recurrent neural network (SRNN) that uses a series of interconnected RNNs to jointly capture the actions of individuals, their interactions, as well as the group activity. While previous structural recurrent neural networks assumed that the number of nodes and edges is constant, we use a grid pooling layer to address the fact that the number of individuals in a group can vary. We evaluate two variants of the structural recurrent neural network on the Volleyball Dataset.