Abstract:Addressing sensor drift is essential in industrial measurement systems, where precise data output is necessary for maintaining accuracy and reliability in monitoring processes, as it progressively degrades the performance of machine learning models over time. Our findings indicate that the standard cross-validation method used in existing model training overestimates performance by inadequately accounting for drift. This is primarily because typical cross-validation techniques allow data instances to appear in both training and testing sets, thereby distorting the accuracy of the predictive evaluation. As a result, these models are unable to precisely predict future drift effects, compromising their ability to generalize and adapt to evolving data conditions. This paper presents two solutions: (1) a novel sensor drift compensation learning paradigm for validating models, and (2) automated machine learning (AutoML) techniques to enhance classification performance and compensate sensor drift. By employing strategies such as data balancing, meta-learning, automated ensemble learning, hyperparameter optimization, feature selection, and boosting, our AutoML-DC (Drift Compensation) model significantly improves classification performance against sensor drift. AutoML-DC further adapts effectively to varying drift severities.
Abstract:Detecting anomalies in images has become a well-explored problem in both academia and industry. State-of-the-art algorithms are able to detect defects in increasingly difficult settings and data modalities. However, most current methods are not suited to address 3D objects captured from differing poses. While solutions using Neural Radiance Fields (NeRFs) have been proposed, they suffer from excessive computation requirements, which hinder real-world usability. For this reason, we propose the novel 3D Gaussian splatting-based framework SplatPose which, given multi-view images of a 3D object, accurately estimates the pose of unseen views in a differentiable manner, and detects anomalies in them. We achieve state-of-the-art results in both training and inference speed, and detection performance, even when using less training data than competing methods. We thoroughly evaluate our framework using the recently proposed Pose-agnostic Anomaly Detection benchmark and its multi-pose anomaly detection (MAD) data set.