Abstract:While the field of inverse graphics has been witnessing continuous growth, techniques devised thus far predominantly focus on learning individual scene representations. In contrast, learning large sets of scenes has been a considerable bottleneck in NeRF developments, as repeatedly applying inverse graphics on a sequence of scenes, though essential for various applications, remains largely prohibitive in terms of resource costs. We introduce a framework termed "scaled inverse graphics", aimed at efficiently learning large sets of scene representations, and propose a novel method to this end. It operates in two stages: (i) training a compression model on a subset of scenes, then (ii) training NeRF models on the resulting smaller representations, thereby reducing the optimization space per new scene. In practice, we compact the representation of scenes by learning NeRFs in a latent space to reduce the image resolution, and sharing information across scenes to reduce NeRF representation complexity. We experimentally show that our method presents both the lowest training time and memory footprint in scaled inverse graphics compared to other methods applied independently on each scene. Our codebase is publicly available as open-source. Our project page can be found at https://scaled-ig.github.io .
Abstract:While pre-trained image autoencoders are increasingly utilized in computer vision, the application of inverse graphics in 2D latent spaces has been under-explored. Yet, besides reducing the training and rendering complexity, applying inverse graphics in the latent space enables a valuable interoperability with other latent-based 2D methods. The major challenge is that inverse graphics cannot be directly applied to such image latent spaces because they lack an underlying 3D geometry. In this paper, we propose an Inverse Graphics Autoencoder (IG-AE) that specifically addresses this issue. To this end, we regularize an image autoencoder with 3D-geometry by aligning its latent space with jointly trained latent 3D scenes. We utilize the trained IG-AE to bring NeRFs to the latent space with a latent NeRF training pipeline, which we implement in an open-source extension of the Nerfstudio framework, thereby unlocking latent scene learning for its supported methods. We experimentally confirm that Latent NeRFs trained with IG-AE present an improved quality compared to a standard autoencoder, all while exhibiting training and rendering accelerations with respect to NeRFs trained in the image space. Our project page can be found at https://ig-ae.github.io .
Abstract:We present a method enabling the scaling of NeRFs to learn a large number of semantically-similar scenes. We combine two techniques to improve the required training time and memory cost per scene. First, we learn a 3D-aware latent space in which we train Tri-Plane scene representations, hence reducing the resolution at which scenes are learned. Moreover, we present a way to share common information across scenes, hence allowing for a reduction of model complexity to learn a particular scene. Our method reduces effective per-scene memory costs by 44% and per-scene time costs by 86% when training 1000 scenes. Our project page can be found at https://3da-ae.github.io .
Abstract:The recent advances in text and image synthesis show a great promise for the future of generative models in creative fields. However, a less explored area is the one of 3D model generation, with a lot of potential applications to game design, video production, and physical product design. In our paper, we present 3DGEN, a model that leverages the recent work on both Neural Radiance Fields for object reconstruction and GAN-based image generation. We show that the proposed architecture can generate plausible meshes for objects of the same category as the training images and compare the resulting meshes with the state-of-the-art baselines, leading to visible uplifts in generation quality.
Abstract:In digital advertising, the selection of the optimal item (recommendation) and its best creative presentation (creative optimization) have traditionally been considered separate disciplines. However, both contribute significantly to user satisfaction, underpinning our assumption that it relies on both an item's relevance and its presentation, particularly in the case of visual creatives. In response, we introduce the task of {\itshape Generative Creative Optimization (GCO)}, which proposes the use of generative models for creative generation that incorporate user interests, and {\itshape AdBooster}, a model for personalized ad creatives based on the Stable Diffusion outpainting architecture. This model uniquely incorporates user interests both during fine-tuning and at generation time. To further improve AdBooster's performance, we also introduce an automated data augmentation pipeline. Through our experiments on simulated data, we validate AdBooster's effectiveness in generating more relevant creatives than default product images, showing its potential of enhancing user engagement.
Abstract:Both in academic and industry-based research, online evaluation methods are seen as the golden standard for interactive applications like recommendation systems. Naturally, the reason for this is that we can directly measure utility metrics that rely on interventions, being the recommendations that are being shown to users. Nevertheless, online evaluation methods are costly for a number of reasons, and a clear need remains for reliable offline evaluation procedures. In industry, offline metrics are often used as a first-line evaluation to generate promising candidate models to evaluate online. In academic work, limited access to online systems makes offline metrics the de facto approach to validating novel methods. Two classes of offline metrics exist: proxy-based methods, and counterfactual methods. The first class is often poorly correlated with the online metrics we care about, and the latter class only provides theoretical guarantees under assumptions that cannot be fulfilled in real-world environments. Here, we make the case that simulation-based comparisons provide ways forward beyond offline metrics, and argue that they are a preferable means of evaluation.
Abstract:We introduce Probabilistic Rank and Reward model (PRR), a scalable probabilistic model for personalized slate recommendation. Our model allows state-of-the-art estimation of user interests in the following ubiquitous recommender system scenario: A user is shown a slate of K recommendations and the user chooses at most one of these K items. It is the goal of the recommender system to find the K items of most interest to a user in order to maximize the probability that the user interacts with the slate. Our contribution is to show that we can learn more effectively the probability of the recommendations being successful by combining the reward - whether the slate was clicked or not - and the rank - the item on the slate that was selected. Our method learns more efficiently than bandit methods that use only the reward, and user preference methods that use only the rank. It also provides similar or better estimation performance to independent inverse-propensity-score methods and is far more scalable. Our method is state of the art in terms of both speed and accuracy on massive datasets with up to 1 million items. Finally, our method allows fast delivery of recommendations powered by maximum inner product search (MIPS), making it suitable in extremely low latency domains such as computational advertising.
Abstract:Current recommendation approaches help online merchants predict, for each visiting user, which subset of their existing products is the most relevant. However, besides being interested in matching users with existing products, merchants are also interested in understanding their users' underlying preferences. This could indeed help them produce or acquire better matching products in the future. We argue that existing recommendation models cannot directly be used to predict the optimal combination of features that will make new products serve better the needs of the target audience. To tackle this, we turn to generative models, which allow us to learn explicitly distributions over product feature combinations both in text and visual space. We develop WARHOL, a product generation and recommendation architecture that takes as input past user shopping activity and generates relevant textual and visual descriptions of novel products. We show that WARHOL can approach the performance of state-of-the-art recommendation models, while being able to generate entirely new products that are relevant to the given user profiles.
Abstract:We consider the problem of slate recommendation, where the recommender system presents a user with a collection or slate composed of K recommended items at once. If the user finds the recommended items appealing then the user may click and the recommender system receives some feedback. Two pieces of information are available to the recommender system: was the slate clicked? (the reward), and if the slate was clicked, which item was clicked? (rank). In this paper, we formulate several Bayesian models that incorporate the reward signal (Reward model), the rank signal (Rank model), or both (Full model), for non-personalized slate recommendation. In our experiments, we analyze performance gains of the Full model and show that it achieves significantly lower error as the number of products in the catalog grows or as the slate size increases.
Abstract:This paper extends the Distributionally Robust Optimization (DRO) approach for offline contextual bandits. Specifically, we leverage this framework to introduce a convex reformulation of the Counterfactual Risk Minimization principle. Besides relying on convex programs, our approach is compatible with stochastic optimization, and can therefore be readily adapted tothe large data regime. Our approach relies on the construction of asymptotic confidence intervals for offline contextual bandits through the DRO framework. By leveraging known asymptotic results of robust estimators, we also show how to automatically calibrate such confidence intervals, which in turn removes the burden of hyper-parameter selection for policy optimization. We present preliminary empirical results supporting the effectiveness of our approach.