Key Laboratory of AI Safety, Institute of Computing Technology, CAS
Abstract:Tool learning enables large language models (LLMs) to interact with external tools and APIs, greatly expanding the application scope of LLMs. However, due to the dynamic nature of external environments, these tools and APIs may become outdated over time, preventing LLMs from correctly invoking tools. Existing research primarily focuses on static environments and overlooks this issue, limiting the adaptability of LLMs in real-world applications. In this paper, we propose ToolEVO, a novel framework designed to enhance the adaptive and reflective capabilities of LLMs against tool variability. By leveraging Monte Carlo Tree Search, ToolEVO facilitates active exploration and interaction of LLMs within dynamic environments, allowing for autonomous self-reflection and self-updating of tool usage based on environmental feedback. Additionally, we introduce ToolQA-D, a benchmark specifically designed to evaluate the impact of tool variability. Extensive experiments demonstrate the effectiveness and stability of our approach, highlighting the importance of adaptability to tool variability for effective tool learning.
Abstract:As recent multi-modality large language models (MLLMs) have shown formidable proficiency on various complex tasks, there has been increasing attention on debating whether these models could eventually mirror human intelligence. However, existing benchmarks mainly focus on evaluating solely on task performance, such as the accuracy of identifying the attribute of an object. Combining well-developed cognitive science to understand the intelligence of MLLMs beyond superficial achievements remains largely unexplored. To this end, we introduce the first cognitive-driven multi-lingual and multi-modal benchmark to evaluate the general intelligence ability of MLLMs, dubbed M3GIA. Specifically, we identify five key cognitive factors based on the well-recognized Cattell-Horn-Carrol (CHC) model of intelligence and propose a novel evaluation metric. In addition, since most MLLMs are trained to perform in different languages, a natural question arises: is language a key factor influencing the cognitive ability of MLLMs? As such, we go beyond English to encompass other languages based on their popularity, including Chinese, French, Spanish, Portuguese and Korean, to construct our M3GIA. We make sure all the data relevant to the cultural backgrounds are collected from their native context to avoid English-centric bias. We collected a significant corpus of data from human participants, revealing that the most advanced MLLM reaches the lower boundary of human intelligence in English. Yet, there remains a pronounced disparity in the other five languages assessed. We also reveals an interesting winner takes all phenomenon that are aligned with the discovery in cognitive studies. Our benchmark will be open-sourced, with the aspiration of facilitating the enhancement of cognitive capabilities in MLLMs.
Abstract:As graph representation learning often suffers from label scarcity problems in real-world applications, researchers have proposed graph domain adaptation (GDA) as an effective knowledge-transfer paradigm across graphs. In particular, to enhance model performance on target graphs with specific tasks, GDA introduces a bunch of task-related graphs as source graphs and adapts the knowledge learnt from source graphs to the target graphs. Since GDA combines the advantages of graph representation learning and domain adaptation, it has become a promising direction of transfer learning on graphs and has attracted an increasing amount of research interest in recent years. In this paper, we comprehensively overview the studies of GDA and present a detailed survey of recent advances. Specifically, we outline the research status and challenges, propose a taxonomy, introduce the details of representative works, and discuss the prospects. To the best of our knowledge, this paper is the first survey for graph domain adaptation. A detailed paper list is available at https://github.com/Skyorca/Awesome-Graph-Domain-Adaptation-Papers.
Abstract:Most existing methods that address out-of-distribution (OOD) generalization for node classification on graphs primarily focus on a specific type of data biases, such as label selection bias or structural bias. However, anticipating the type of bias in advance is extremely challenging, and designing models solely for one specific type may not necessarily improve overall generalization performance. Moreover, limited research has focused on the impact of mixed biases, which are more prevalent and demanding in real-world scenarios. To address these limitations, we propose a novel Causality and Independence Enhancement (CIE) framework, applicable to various graph neural networks (GNNs). Our approach estimates causal and spurious features at the node representation level and mitigates the influence of spurious correlations through the backdoor adjustment. Meanwhile, independence constraint is introduced to improve the discriminability and stability of causal and spurious features in complex biased environments. Essentially, CIE eliminates different types of data biases from a unified perspective, without the need to design separate methods for each bias as before. To evaluate the performance under specific types of data biases, mixed biases, and low-resource scenarios, we conducted comprehensive experiments on five publicly available datasets. Experimental results demonstrate that our approach CIE not only significantly enhances the performance of GNNs but outperforms state-of-the-art debiased node classification methods.
Abstract:Graph domain adaptation models are widely adopted in cross-network learning tasks, with the aim of transferring labeling or structural knowledge. Currently, there mainly exist two limitations in evaluating graph domain adaptation models. On one side, they are primarily tested for the specific cross-network node classification task, leaving tasks at edge-level and graph-level largely under-explored. Moreover, they are primarily tested in limited scenarios, such as social networks or citation networks, lacking validation of model's capability in richer scenarios. As comprehensively assessing models could enhance model practicality in real-world applications, we propose a benchmark, known as OpenGDA. It provides abundant pre-processed and unified datasets for different types of tasks (node, edge, graph). They originate from diverse scenarios, covering web information systems, urban systems and natural systems. Furthermore, it integrates state-of-the-art models with standardized and end-to-end pipelines. Overall, OpenGDA provides a user-friendly, scalable and reproducible benchmark for evaluating graph domain adaptation models. The benchmark experiments highlight the challenges of applying GDA models to real-world applications with consistent good performance, and potentially provide insights to future research. As an emerging project, OpenGDA will be regularly updated with new datasets and models. It could be accessed from https://github.com/Skyorca/OpenGDA.