Abstract:Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions. However, the key evidence from neuroimaging data for pathological commonness remains unrevealed. To explore this hypothesis, we build a deep learning model, using multi-site functional magnetic resonance imaging data (N=4,410, 6 sites), for classifying 5 different brain disorders from healthy controls, with a set of common features. Our model achieves 62.6(1.9)% overall classification accuracy on data from the 6 investigated sites and detects a set of commonly affected functional subnetworks at different spatial scales, including default mode, executive control, visual, and limbic networks. In the deep-layer feature representation for individual data, we observe young and aging patients with disorders are continuously distributed, which is in line with the clinical concept of the "spectrum of disorders". The revealed spectrum underlying early- and late-life brain disorders promotes the understanding of disorder comorbidities in the lifespan.
Abstract:This paper studies the distribution estimation of contaminated data by the MoM-GAN method, which combines generative adversarial net (GAN) and median-of-mean (MoM) estimation. We use a deep neural network (DNN) with a ReLU activation function to model the generator and discriminator of the GAN. Theoretically, we derive a non-asymptotic error bound for the DNN-based MoM-GAN estimator measured by integral probability metrics with the $b$-smoothness H\"{o}lder class. The error bound decreases essentially as $n^{-b/p}\vee n^{-1/2}$, where $n$ and $p$ are the sample size and the dimension of input data. We give an algorithm for the MoM-GAN method and implement it through two real applications. The numerical results show that the MoM-GAN outperforms other competitive methods when dealing with contaminated data.
Abstract:Since statistical guarantees for neural networks are usually restricted to global optima of intricate objective functions, it is not clear whether these theories really explain the performances of actual outputs of neural-network pipelines. The goal of this paper is, therefore, to bring statistical theory closer to practice. We develop statistical guarantees for simple neural networks that coincide up to logarithmic factors with the global optima but apply to stationary points and the points nearby. These results support the common notion that neural networks do not necessarily need to be optimized globally from a mathematical perspective. More generally, despite being limited to simple neural networks for now, our theories make a step forward in describing the practical properties of neural networks in mathematical terms.
Abstract:Neural networks have become standard tools in the analysis of data, but they lack comprehensive mathematical theories. For example, there are very few statistical guarantees for learning neural networks from data, especially for classes of estimators that are used in practice or at least similar to such. In this paper, we develop a general statistical guarantee for estimators that consist of a least-squares term and a regularizer. We then exemplify this guarantee with $\ell_1$-regularization, showing that the corresponding prediction error increases at most sub-linearly in the number of layers and at most logarithmically in the total number of parameters. Our results establish a mathematical basis for regularized estimation of neural networks, and they deepen our mathematical understanding of neural networks and deep learning more generally.
Abstract:Ridge estimators regularize the squared Euclidean lengths of parameters. Such estimators are mathematically and computationally attractive but involve tuning parameters that can be difficult to calibrate. In this paper, we show that ridge estimators can be modified such that tuning parameters can be avoided altogether. We also show that these modified versions can improve on the empirical prediction accuracies of standard ridge estimators combined with cross-validation, and we provide first theoretical guarantees.
Abstract:Person-Job Fit is the process of matching the right talent for the right job by identifying talent competencies that are required for the job. While many qualitative efforts have been made in related fields, it still lacks of quantitative ways of measuring talent competencies as well as the job's talent requirements. To this end, in this paper, we propose a novel end-to-end data-driven model based on Convolutional Neural Network (CNN), namely Person-Job Fit Neural Network (PJFNN), for matching a talent qualification to the requirements of a job. To be specific, PJFNN is a bipartite neural network which can effectively learn the joint representation of Person-Job fitness from historical job applications. In particular, due to the design of a hierarchical representation structure, PJFNN can not only estimate whether a candidate fits a job, but also identify which specific requirement items in the job posting are satisfied by the candidate by measuring the distances between corresponding latent representations. Finally, the extensive experiments on a large-scale real-world dataset clearly validate the performance of PJFNN in terms of Person-Job Fit prediction. Also, we provide effective data visualization to show some job and talent benchmark insights obtained by PJFNN.
Abstract:Recruitment market analysis provides valuable understanding of industry-specific economic growth and plays an important role for both employers and job seekers. With the rapid development of online recruitment services, massive recruitment data have been accumulated and enable a new paradigm for recruitment market analysis. However, traditional methods for recruitment market analysis largely rely on the knowledge of domain experts and classic statistical models, which are usually too general to model large-scale dynamic recruitment data, and have difficulties to capture the fine-grained market trends. To this end, in this paper, we propose a new research paradigm for recruitment market analysis by leveraging unsupervised learning techniques for automatically discovering recruitment market trends based on large-scale recruitment data. Specifically, we develop a novel sequential latent variable model, named MTLVM, which is designed for capturing the sequential dependencies of corporate recruitment states and is able to automatically learn the latent recruitment topics within a Bayesian generative framework. In particular, to capture the variability of recruitment topics over time, we design hierarchical dirichlet processes for MTLVM. These processes allow to dynamically generate the evolving recruitment topics. Finally, we implement a prototype system to empirically evaluate our approach based on real-world recruitment data in China. Indeed, by visualizing the results from MTLVM, we can successfully reveal many interesting findings, such as the popularity of LBS related jobs reached the peak in the 2nd half of 2014, and decreased in 2015.