Abstract:In this work, we propose a novel pipeline for face recognition and out-of-distribution (OOD) detection using short-range FMCW radar. The proposed system utilizes Range-Doppler and micro Range-Doppler Images. The architecture features a primary path (PP) responsible for the classification of in-distribution (ID) faces, complemented by intermediate paths (IPs) dedicated to OOD detection. The network is trained in two stages: first, the PP is trained using triplet loss to optimize ID face classification. In the second stage, the PP is frozen, and the IPs-comprising simple linear autoencoder networks-are trained specifically for OOD detection. Using our dataset generated with a 60 GHz FMCW radar, our method achieves an ID classification accuracy of 99.30% and an OOD detection AUROC of 96.91%.
Abstract:This study proposes a novel approach for real-time facial expression recognition utilizing short-range Frequency-Modulated Continuous-Wave (FMCW) radar equipped with one transmit (Tx), and three receive (Rx) antennas. The system leverages four distinct modalities simultaneously: Range-Doppler images (RDIs), micro range-Doppler Images (micro-RDIs), range azimuth images (RAIs), and range elevation images (REIs). Our innovative architecture integrates feature extractor blocks, intermediate feature extractor blocks, and a ResNet block to accurately classify facial expressions into smile, anger, neutral, and no-face classes. Our model achieves an average classification accuracy of 98.91% on the dataset collected using a 60 GHz short-range FMCW radar. The proposed solution operates in real-time in a person-independent manner, which shows the potential use of low-cost FMCW radars for effective facial expression recognition in various applications.
Abstract:In practical use cases, polygonal mesh editing can be faster than generating new ones, but it can still be challenging and time-consuming for users. Existing solutions for this problem tend to focus on a single task, either geometry or novel view synthesis, which often leads to disjointed results between the mesh and view. In this work, we propose LEMON, a mesh editing pipeline that combines neural deferred shading with localized mesh optimization. Our approach begins by identifying the most important vertices in the mesh for editing, utilizing a segmentation model to focus on these key regions. Given multi-view images of an object, we optimize a neural shader and a polygonal mesh while extracting the normal map and the rendered image from each view. By using these outputs as conditioning data, we edit the input images with a text-to-image diffusion model and iteratively update our dataset while deforming the mesh. This process results in a polygonal mesh that is edited according to the given text instruction, preserving the geometric characteristics of the initial mesh while focusing on the most significant areas. We evaluate our pipeline using the DTU dataset, demonstrating that it generates finely-edited meshes more rapidly than the current state-of-the-art methods. We include our code and additional results in the supplementary material.
Abstract:This paper proposes a short-range FMCW radar-based facial authentication and out-of-distribution (OOD) detection framework. Our pipeline jointly estimates the correct classes for the in-distribution (ID) samples and detects the OOD samples to prevent their inaccurate prediction. Our reconstruction-based architecture consists of a main convolutional block with one encoder and multi-decoder configuration, and intermediate linear encoder-decoder parts. Together, these elements form an accurate human face classifier and a robust OOD detector. For our dataset, gathered using a 60 GHz short-range FMCW radar, our network achieves an average classification accuracy of 98.07% in identifying in-distribution human faces. As an OOD detector, it achieves an average Area Under the Receiver Operating Characteristic (AUROC) curve of 98.50% and an average False Positive Rate at 95% True Positive Rate (FPR95) of 6.20%. Also, our extensive experiments show that the proposed approach outperforms previous OOD detectors in terms of common OOD detection metrics.
Abstract:Hand-Object Interactions (HOIs) are conditioned on spatial and temporal contexts like surrounding objects, pre- vious actions, and future intents (for example, grasping and handover actions vary greatly based on objects proximity and trajectory obstruction). However, existing datasets for 4D HOI (3D HOI over time) are limited to one subject inter- acting with one object only. This restricts the generalization of learning-based HOI methods trained on those datasets. We introduce ADL4D, a dataset of up to two subjects inter- acting with different sets of objects performing Activities of Daily Living (ADL) like breakfast or lunch preparation ac- tivities. The transition between multiple objects to complete a certain task over time introduces a unique context lacking in existing datasets. Our dataset consists of 75 sequences with a total of 1.1M RGB-D frames, hand and object poses, and per-hand fine-grained action annotations. We develop an automatic system for multi-view multi-hand 3D pose an- notation capable of tracking hand poses over time. We inte- grate and test it against publicly available datasets. Finally, we evaluate our dataset on the tasks of Hand Mesh Recov- ery (HMR) and Hand Action Segmentation (HAS).
Abstract:As learned image codecs (LICs) become more prevalent, their low coding efficiency for out-of-distribution data becomes a bottleneck for some applications. To improve the performance of LICs for screen content (SC) images without breaking backwards compatibility, we propose to introduce parameterized and invertible linear transformations into the coding pipeline without changing the underlying baseline codec's operation flow. We design two neural networks to act as prefilters and postfilters in our setup to increase the coding efficiency and help with the recovery from coding artifacts. Our end-to-end trained solution achieves up to 10% bitrate savings on SC compression compared to the baseline LICs while introducing only 1% extra parameters.
Abstract:We propose HAROOD as a short-range FMCW radar-based human activity classifier and out-of-distribution (OOD) detector. It aims to classify human sitting, standing, and walking activities and to detect any other moving or stationary object as OOD. We introduce a two-stage network. The first stage is trained with a novel loss function that includes intermediate reconstruction loss, intermediate contrastive loss, and triplet loss. The second stage uses the first stage's output as its input and is trained with cross-entropy loss. It creates a simple classifier that performs the activity classification. On our dataset collected by 60 GHz short-range FMCW radar, we achieve an average classification accuracy of 96.51%. Also, we achieve an average AUROC of 95.04% as an OOD detector. Additionally, our extensive evaluations demonstrate the superiority of HAROOD over the state-of-the-art OOD detection methods in terms of standard OOD detection metrics.
Abstract:The COVID-19 pandemic shifted many events in our daily lives into the virtual domain. While virtual conference systems provide an alternative to physical meetings, larger events require a muted audience to avoid an accumulation of background noise and distorted audio. However, performing artists strongly rely on the feedback of their audience. We propose a concept for a virtual audience framework which supports all participants with the ambience of a real audience. Audience feedback is collected locally, allowing users to express enthusiasm or discontent by selecting means such as clapping, whistling, booing, and laughter. This feedback is sent as abstract information to a virtual audience server. We broadcast the combined virtual audience feedback information to all participants, which can be synthesized as a single acoustic feedback by the client. The synthesis can be done by turning the collective audience feedback into a prompt that is fed to state-of-the-art models such as AudioGen. This way, each user hears a single acoustic feedback sound of the entire virtual event, without requiring to unmute or risk hearing distorted, unsynchronized feedback.
Abstract:As labor shortage increases in the health sector, the demand for assistive robotics grows. However, the needed test data to develop those robots is scarce, especially for the application of active 3D object detection, where no real data exists at all. This short paper counters this by introducing such an annotated dataset of real environments. The captured environments represent areas which are already in use in the field of robotic health care research. We further provide ground truth data within one room, for assessing SLAM algorithms running directly on a health care robot.
Abstract:Human presence detection in indoor environments using millimeter-wave frequency-modulated continuous-wave (FMCW) radar is challenging due to the presence of moving and stationary clutters in indoor places. This work proposes "HOOD" as a real-time robust human presence and out-of-distribution (OOD) detection method by exploiting 60 GHz short-range FMCW radar. We approach the presence detection application as an OOD detection problem and solve the two problems simultaneously using a single pipeline. Our solution relies on a reconstruction-based architecture and works with radar macro and micro range-Doppler images (RDIs). HOOD aims to accurately detect the "presence" of humans in the presence or absence of moving and stationary disturbers. Since it is also an OOD detector, it aims to detect moving or stationary clutters as OOD in humans' absence and predicts the current scene's output as "no presence." HOOD is an activity-free approach that performs well in different human scenarios. On our dataset collected with a 60 GHz short-range FMCW Radar, we achieve an average AUROC of 94.36%. Additionally, our extensive evaluations and experiments demonstrate that HOOD outperforms state-of-the-art (SOTA) OOD detection methods in terms of common OOD detection metrics. Our real-time experiments are available at: https://muskahya.github.io/HOOD