Abstract:In practical use cases, polygonal mesh editing can be faster than generating new ones, but it can still be challenging and time-consuming for users. Existing solutions for this problem tend to focus on a single task, either geometry or novel view synthesis, which often leads to disjointed results between the mesh and view. In this work, we propose LEMON, a mesh editing pipeline that combines neural deferred shading with localized mesh optimization. Our approach begins by identifying the most important vertices in the mesh for editing, utilizing a segmentation model to focus on these key regions. Given multi-view images of an object, we optimize a neural shader and a polygonal mesh while extracting the normal map and the rendered image from each view. By using these outputs as conditioning data, we edit the input images with a text-to-image diffusion model and iteratively update our dataset while deforming the mesh. This process results in a polygonal mesh that is edited according to the given text instruction, preserving the geometric characteristics of the initial mesh while focusing on the most significant areas. We evaluate our pipeline using the DTU dataset, demonstrating that it generates finely-edited meshes more rapidly than the current state-of-the-art methods. We include our code and additional results in the supplementary material.
Abstract:Wearable devices have the potential to enhance sports performance, yet they are not fulfilling this promise. Our previous studies with 6 professional tennis coaches and 20 players indicate that this could be due the lack of psychological or mental state feedback, which the coaches claim to provide. Towards this end, we propose to detect the flow state, mental state of optimal performance, using wearables data to be later used in training. We performed a study with a professional tennis coach and two players. The coach provided labels about the players' flow state while each player had a wearable device on their racket holding wrist. We trained multiple models using the wearables data and the coach labels. Our deep neural network models achieved around 98% testing accuracy for a variety of conditions. This suggests that the flow state or what coaches recognize as flow, can be detected using wearables data in tennis which is a novel result. The implication for the HCI community is that having access to such information would allow for design of novel hardware and interaction paradigms that would be helpful in professional athlete training.