Hand-Object Interactions (HOIs) are conditioned on spatial and temporal contexts like surrounding objects, pre- vious actions, and future intents (for example, grasping and handover actions vary greatly based on objects proximity and trajectory obstruction). However, existing datasets for 4D HOI (3D HOI over time) are limited to one subject inter- acting with one object only. This restricts the generalization of learning-based HOI methods trained on those datasets. We introduce ADL4D, a dataset of up to two subjects inter- acting with different sets of objects performing Activities of Daily Living (ADL) like breakfast or lunch preparation ac- tivities. The transition between multiple objects to complete a certain task over time introduces a unique context lacking in existing datasets. Our dataset consists of 75 sequences with a total of 1.1M RGB-D frames, hand and object poses, and per-hand fine-grained action annotations. We develop an automatic system for multi-view multi-hand 3D pose an- notation capable of tracking hand poses over time. We inte- grate and test it against publicly available datasets. Finally, we evaluate our dataset on the tasks of Hand Mesh Recov- ery (HMR) and Hand Action Segmentation (HAS).