Abstract:We introduce Multi-level feature Fusion-based Periodicity Analysis Model (MF-PAM), a novel deep learning-based pitch estimation model that accurately estimates pitch trajectory in noisy and reverberant acoustic environments. Our model leverages the periodic characteristics of audio signals and involves two key steps: extracting pitch periodicity using periodic non-periodic convolution (PNP-Conv) blocks and estimating pitch by aggregating multi-level features using a modified bi-directional feature pyramid network (BiFPN). We evaluate our model on speech and music datasets and achieve superior pitch estimation performance compared to state-of-the-art baselines while using fewer model parameters. Our model achieves 99.20 % accuracy in pitch estimation on a clean musical dataset. Overall, our proposed model provides a promising solution for accurate pitch estimation in challenging acoustic environments and has potential applications in audio signal processing.
Abstract:This paper introduces an end-to-end neural speech restoration model, HD-DEMUCS, demonstrating efficacy across multiple distortion environments. Unlike conventional approaches that employ cascading frameworks to remove undesirable noise first and then restore missing signal components, our model performs these tasks in parallel using two heterogeneous decoder networks. Based on the U-Net style encoder-decoder framework, we attach an additional decoder so that each decoder network performs noise suppression or restoration separately. We carefully design each decoder architecture to operate appropriately depending on its objectives. Additionally, we improve performance by leveraging a learnable weighting factor, aggregating the two decoder output waveforms. Experimental results with objective metrics across various environments clearly demonstrate the effectiveness of our approach over a single decoder or multi-stage systems for general speech restoration task.
Abstract:Portrait stylization, which translates a real human face image into an artistically stylized image, has attracted considerable interest and many prior works have shown impressive quality in recent years. However, despite their remarkable performances in the image-level translation tasks, prior methods show unsatisfactory results when they are applied to the video domain. To address the issue, we propose a novel two-stage video translation framework with an objective function which enforces a model to generate a temporally coherent stylized video while preserving context in the source video. Furthermore, our model runs in real-time with the latency of 0.011 seconds per frame and requires only 5.6M parameters, and thus is widely applicable to practical real-world applications.
Abstract:Recent studies show strong generative performance in domain translation especially by using transfer learning techniques on the unconditional generator. However, the control between different domain features using a single model is still challenging. Existing methods often require additional models, which is computationally demanding and leads to unsatisfactory visual quality. In addition, they have restricted control steps, which prevents a smooth transition. In this paper, we propose a new approach for high-quality domain translation with better controllability. The key idea is to preserve source features within a disentangled subspace of a target feature space. This allows our method to smoothly control the degree to which it preserves source features while generating images from an entirely new domain using only a single model. Our extensive experiments show that the proposed method can produce more consistent and realistic images than previous works and maintain precise controllability over different levels of transformation. The code is available at https://github.com/LeeDongYeun/FixNoise.
Abstract:In this paper, we propose a novel end-to-end user-defined keyword spotting method that utilizes linguistically corresponding patterns between speech and text sequences. Unlike previous approaches requiring speech keyword enrollment, our method compares input queries with an enrolled text keyword sequence. To place the audio and text representations within a common latent space, we adopt an attention-based cross-modal matching approach that is trained in an end-to-end manner with monotonic matching loss and keyword classification loss. We also utilize a de-noising loss for the acoustic embedding network to improve robustness in noisy environments. Additionally, we introduce the LibriPhrase dataset, a new short-phrase dataset based on LibriSpeech for efficiently training keyword spotting models. Our proposed method achieves competitive results on various evaluation sets compared to other single-modal and cross-modal baselines.
Abstract:Transfer learning of StyleGAN has recently shown great potential to solve diverse tasks, especially in domain translation. Previous methods utilized a source model by swapping or freezing weights during transfer learning, however, they have limitations on visual quality and controlling source features. In other words, they require additional models that are computationally demanding and have restricted control steps that prevent a smooth transition. In this paper, we propose a new approach to overcome these limitations. Instead of swapping or freezing, we introduce a simple feature matching loss to improve generation quality. In addition, to control the degree of source features, we train a target model with the proposed strategy, FixNoise, to preserve the source features only in a disentangled subspace of a target feature space. Owing to the disentangled feature space, our method can smoothly control the degree of the source features in a single model. Extensive experiments demonstrate that the proposed method can generate more consistent and realistic images than previous works.
Abstract:Modern neural speech enhancement models usually include various forms of phase information in their training loss terms, either explicitly or implicitly. However, these loss terms are typically designed to reduce the distortion of phase spectrum values at specific frequencies, which ensures they do not significantly affect the quality of the enhanced speech. In this paper, we propose an effective phase reconstruction strategy for neural speech enhancement that can operate in noisy environments. Specifically, we introduce a phase continuity loss that considers relative phase variations across the time and frequency axes. By including this phase continuity loss in a state-of-the-art neural speech enhancement system trained with reconstruction loss and a number of magnitude spectral losses, we show that our proposed method further improves the quality of enhanced speech signals over the baseline, especially when training is done jointly with a magnitude spectrum loss.
Abstract:Various deepfake detectors have been proposed, but challenges still exist to detect images of unknown categories or GAN models outside of the training settings. Such issues arise from the overfitting issue, which we discover from our own analysis and the previous studies to originate from the frequency-level artifacts in generated images. We find that ignoring the frequency-level artifacts can improve the detector's generalization across various GAN models, but it can reduce the model's performance for the trained GAN models. Thus, we design a framework to generalize the deepfake detector for both the known and unseen GAN models. Our framework generates the frequency-level perturbation maps to make the generated images indistinguishable from the real images. By updating the deepfake detector along with the training of the perturbation generator, our model is trained to detect the frequency-level artifacts at the initial iterations and consider the image-level irregularities at the last iterations. For experiments, we design new test scenarios varying from the training settings in GAN models, color manipulations, and object categories. Numerous experiments validate the state-of-the-art performance of our deepfake detector.
Abstract:Depth estimation from a single image is an important task that can be applied to various fields in computer vision, and has grown rapidly with the development of convolutional neural networks. In this paper, we propose a novel structure and training strategy for monocular depth estimation to further improve the prediction accuracy of the network. We deploy a hierarchical transformer encoder to capture and convey the global context, and design a lightweight yet powerful decoder to generate an estimated depth map while considering local connectivity. By constructing connected paths between multi-scale local features and the global decoding stream with our proposed selective feature fusion module, the network can integrate both representations and recover fine details. In addition, the proposed decoder shows better performance than the previously proposed decoders, with considerably less computational complexity. Furthermore, we improve the depth-specific augmentation method by utilizing an important observation in depth estimation to enhance the model. Our network achieves state-of-the-art performance over the challenging depth dataset NYU Depth V2. Extensive experiments have been conducted to validate and show the effectiveness of the proposed approach. Finally, our model shows better generalisation ability and robustness than other comparative models.
Abstract:With the development of 3D scanning technologies, 3D vision tasks have become a popular research area. Owing to the large amount of data acquired by sensors, unsupervised learning is essential for understanding and utilizing point clouds without an expensive annotation process. In this paper, we propose a novel framework and an effective auto-encoder architecture named "PSG-Net" for reconstruction-based learning of point clouds. Unlike existing studies that used fixed or random 2D points, our framework generates input-dependent point-wise features for the latent point set. PSG-Net uses the encoded input to produce point-wise features through the seed generation module and extracts richer features in multiple stages with gradually increasing resolution by applying the seed feature propagation module progressively. We prove the effectiveness of PSG-Net experimentally; PSG-Net shows state-of-the-art performances in point cloud reconstruction and unsupervised classification, and achieves comparable performance to counterpart methods in supervised completion.