Abstract:One of the most challenging problems in audio-driven talking head generation is achieving high-fidelity detail while ensuring precise synchronization. Given only a single reference image, extracting meaningful identity attributes becomes even more challenging, often causing the network to mirror the facial and lip structures too closely. To address these issues, we introduce RADIO, a framework engineered to yield high-quality dubbed videos regardless of the pose or expression in reference images. The key is to modulate the decoder layers using latent space composed of audio and reference features. Additionally, we incorporate ViT blocks into the decoder to emphasize high-fidelity details, especially in the lip region. Our experimental results demonstrate that RADIO displays high synchronization without the loss of fidelity. Especially in harsh scenarios where the reference frame deviates significantly from the ground truth, our method outperforms state-of-the-art methods, highlighting its robustness. Pre-trained model and codes will be made public after the review.
Abstract:Recent studies show strong generative performance in domain translation especially by using transfer learning techniques on the unconditional generator. However, the control between different domain features using a single model is still challenging. Existing methods often require additional models, which is computationally demanding and leads to unsatisfactory visual quality. In addition, they have restricted control steps, which prevents a smooth transition. In this paper, we propose a new approach for high-quality domain translation with better controllability. The key idea is to preserve source features within a disentangled subspace of a target feature space. This allows our method to smoothly control the degree to which it preserves source features while generating images from an entirely new domain using only a single model. Our extensive experiments show that the proposed method can produce more consistent and realistic images than previous works and maintain precise controllability over different levels of transformation. The code is available at https://github.com/LeeDongYeun/FixNoise.
Abstract:Transfer learning of StyleGAN has recently shown great potential to solve diverse tasks, especially in domain translation. Previous methods utilized a source model by swapping or freezing weights during transfer learning, however, they have limitations on visual quality and controlling source features. In other words, they require additional models that are computationally demanding and have restricted control steps that prevent a smooth transition. In this paper, we propose a new approach to overcome these limitations. Instead of swapping or freezing, we introduce a simple feature matching loss to improve generation quality. In addition, to control the degree of source features, we train a target model with the proposed strategy, FixNoise, to preserve the source features only in a disentangled subspace of a target feature space. Owing to the disentangled feature space, our method can smoothly control the degree of the source features in a single model. Extensive experiments demonstrate that the proposed method can generate more consistent and realistic images than previous works.