Abstract:Fine-grained sentiment analysis involves extracting and organizing sentiment elements from textual data. However, existing approaches often overlook issues of category semantic inclusion and overlap, as well as inherent structural patterns within the target sequence. This study introduces a generative sentiment analysis model. To address the challenges related to category semantic inclusion and overlap, a latent category distribution variable is introduced. By reconstructing the input of a variational autoencoder, the model learns the intensity of the relationship between categories and text, thereby improving sequence generation. Additionally, a trie data structure and constrained decoding strategy are utilized to exploit structural patterns, which in turn reduces the search space and regularizes the generation process. Experimental results on the Restaurant-ACOS and Laptop-ACOS datasets demonstrate a significant performance improvement compared to baseline models. Ablation experiments further confirm the effectiveness of latent category distribution and constrained decoding strategy.
Abstract:Structured Sentiment Analysis (SSA) was cast as a problem of bi-lexical dependency graph parsing by prior studies. Multiple formulations have been proposed to construct the graph, which share several intrinsic drawbacks: (1) The internal structures of spans are neglected, thus only the boundary tokens of spans are used for relation prediction and span recognition, thus hindering the model's expressiveness; (2) Long spans occupy a significant proportion in the SSA datasets, which further exacerbates the problem of internal structure neglect. In this paper, we treat the SSA task as a dependency parsing task on partially-observed dependency trees, regarding flat spans without determined tree annotations as latent subtrees to consider internal structures of spans. We propose a two-stage parsing method and leverage TreeCRFs with a novel constrained inside algorithm to model latent structures explicitly, which also takes advantages of joint scoring graph arcs and headed spans for global optimization and inference. Results of extensive experiments on five benchmark datasets reveal that our method performs significantly better than all previous bi-lexical methods, achieving new state-of-the-art.
Abstract:Document-level event extraction aims to extract structured event information from unstructured text. However, a single document often contains limited event information and the roles of different event arguments may be biased due to the influence of the information source. This paper addresses the limitations of traditional document-level event extraction by proposing the task of cross-document event extraction (CDEE) to integrate event information from multiple documents and provide a comprehensive perspective on events. We construct a novel cross-document event extraction dataset, namely CLES, which contains 20,059 documents and 37,688 mention-level events, where over 70% of them are cross-document. To build a benchmark, we propose a CDEE pipeline that includes 5 steps, namely event extraction, coreference resolution, entity normalization, role normalization and entity-role resolution. Our CDEE pipeline achieves about 72% F1 in end-to-end cross-document event extraction, suggesting the challenge of this task. Our work builds a new line of information extraction research and will attract new research attention.
Abstract:Existing cross-document event coreference resolution models, which either compute mention similarity directly or enhance mention representation by extracting event arguments (such as location, time, agent, and patient), lacking the ability to utilize document-level information. As a result, they struggle to capture long-distance dependencies. This shortcoming leads to their underwhelming performance in determining coreference for the events where their argument information relies on long-distance dependencies. In light of these limitations, we propose the construction of document-level Rhetorical Structure Theory (RST) trees and cross-document Lexical Chains to model the structural and semantic information of documents. Subsequently, cross-document heterogeneous graphs are constructed and GAT is utilized to learn the representations of events. Finally, a pair scorer calculates the similarity between each pair of events and co-referred events can be recognized using standard clustering algorithm. Additionally, as the existing cross-document event coreference datasets are limited to English, we have developed a large-scale Chinese cross-document event coreference dataset to fill this gap, which comprises 53,066 event mentions and 4,476 clusters. After applying our model on the English and Chinese datasets respectively, it outperforms all baselines by large margins.
Abstract:Headline generation aims to summarize a long document with a short, catchy title that reflects the main idea. This requires accurately capturing the core document semantics, which is challenging due to the lengthy and background information-rich na ture of the texts. In this work, We propose using a unified semantic discourse structure (S3) to represent document semantics, achieved by combining document-level rhetorical structure theory (RST) trees with sentence-level abstract meaning representation (AMR) graphs to construct S3 graphs. The hierarchical composition of sentence, clause, and word intrinsically characterizes the semantic meaning of the overall document. We then develop a headline generation framework, in which the S3 graphs are encoded as contextual features. To consolidate the efficacy of S3 graphs, we further devise a hierarchical structure pruning mechanism to dynamically screen the redundant and nonessential nodes within the graph. Experimental results on two headline generation datasets demonstrate that our method outperforms existing state-of-art methods consistently. Our work can be instructive for a broad range of document modeling tasks, more than headline or summarization generation.
Abstract:Multimodal Named Entity Recognition (MNER) is a pivotal task designed to extract named entities from text with the support of pertinent images. Nonetheless, a notable paucity of data for Chinese MNER has considerably impeded the progress of this natural language processing task within the Chinese domain. Consequently, in this study, we compile a Chinese Multimodal NER dataset (CMNER) utilizing data sourced from Weibo, China's largest social media platform. Our dataset encompasses 5,000 Weibo posts paired with 18,326 corresponding images. The entities are classified into four distinct categories: person, location, organization, and miscellaneous. We perform baseline experiments on CMNER, and the outcomes underscore the effectiveness of incorporating images for NER. Furthermore, we conduct cross-lingual experiments on the publicly available English MNER dataset (Twitter2015), and the results substantiate our hypothesis that Chinese and English multimodal NER data can mutually enhance the performance of the NER model.
Abstract:With the proliferation of dialogic data across the Internet, the Dialogue Commonsense Multi-choice Question Answering (DC-MCQ) task has emerged as a response to the challenge of comprehending user queries and intentions. Although prevailing methodologies exhibit effectiveness in addressing single-choice questions, they encounter difficulties in handling multi-choice queries due to the heightened intricacy and informational density. In this paper, inspired by the human cognitive process of progressively excluding options, we propose a three-step Reverse Exclusion Graph-of-Thought (ReX-GoT) framework, including Option Exclusion, Error Analysis, and Combine Information. Specifically, our ReX-GoT mimics human reasoning by gradually excluding irrelevant options and learning the reasons for option errors to choose the optimal path of the GoT and ultimately infer the correct answer. By progressively integrating intricate clues, our method effectively reduces the difficulty of multi-choice reasoning and provides a novel solution for DC-MCQ. Extensive experiments on the CICERO and CICERO$_{v2}$ datasets validate the significant improvement of our approach on DC-MCQ task. On zero-shot setting, our model outperform the best baseline by 17.67% in terms of F1 score for the multi-choice task. Most strikingly, our GPT3.5-based ReX-GoT framework achieves a remarkable 39.44% increase in F1 score.
Abstract:Despite significant advancements in multi-label text classification, the ability of existing models to generalize to novel and seldom-encountered complex concepts, which are compositions of elementary ones, remains underexplored. This research addresses this gap. By creating unique data splits across three benchmarks, we assess the compositional generalization ability of existing multi-label text classification models. Our results show that these models often fail to generalize to compositional concepts encountered infrequently during training, leading to inferior performance on tests with these new combinations. To address this, we introduce a data augmentation method that leverages two innovative text generation models designed to enhance the classification models' capacity for compositional generalization. Our experiments show that this data augmentation approach significantly improves the compositional generalization capabilities of classification models on our benchmarks, with both generation models surpassing other text generation baselines.
Abstract:The joint task of Dialog Sentiment Classification (DSC) and Act Recognition (DAR) aims to predict the sentiment label and act label for each utterance in a dialog simultaneously. However, current methods encode the dialog context in only one direction, which limits their ability to thoroughly comprehend the context. Moreover, these methods overlook the explicit correlations between sentiment and act labels, which leads to an insufficient ability to capture rich sentiment and act clues and hinders effective and accurate reasoning. To address these issues, we propose a Bi-directional Multi-hop Inference Model (BMIM) that leverages a feature selection network and a bi-directional multi-hop inference network to iteratively extract and integrate rich sentiment and act clues in a bi-directional manner. We also employ contrastive learning and dual learning to explicitly model the correlations of sentiment and act labels. Our experiments on two widely-used datasets show that BMIM outperforms state-of-the-art baselines by at least 2.6% on F1 score in DAR and 1.4% on F1 score in DSC. Additionally, Our proposed model not only improves the performance but also enhances the interpretability of the joint sentiment and act prediction task.
Abstract:It has been a hot research topic to enable machines to understand human emotions in multimodal contexts under dialogue scenarios, which is tasked with multimodal emotion analysis in conversation (MM-ERC). MM-ERC has received consistent attention in recent years, where a diverse range of methods has been proposed for securing better task performance. Most existing works treat MM-ERC as a standard multimodal classification problem and perform multimodal feature disentanglement and fusion for maximizing feature utility. Yet after revisiting the characteristic of MM-ERC, we argue that both the feature multimodality and conversational contextualization should be properly modeled simultaneously during the feature disentanglement and fusion steps. In this work, we target further pushing the task performance by taking full consideration of the above insights. On the one hand, during feature disentanglement, based on the contrastive learning technique, we devise a Dual-level Disentanglement Mechanism (DDM) to decouple the features into both the modality space and utterance space. On the other hand, during the feature fusion stage, we propose a Contribution-aware Fusion Mechanism (CFM) and a Context Refusion Mechanism (CRM) for multimodal and context integration, respectively. They together schedule the proper integrations of multimodal and context features. Specifically, CFM explicitly manages the multimodal feature contributions dynamically, while CRM flexibly coordinates the introduction of dialogue contexts. On two public MM-ERC datasets, our system achieves new state-of-the-art performance consistently. Further analyses demonstrate that all our proposed mechanisms greatly facilitate the MM-ERC task by making full use of the multimodal and context features adaptively. Note that our proposed methods have the great potential to facilitate a broader range of other conversational multimodal tasks.