Abstract:The widespread use of social media has highlighted potential negative impacts on society and individuals, largely driven by recommendation algorithms that shape user behavior and social dynamics. Understanding these algorithms is essential but challenging due to the complex, distributed nature of social media networks as well as limited access to real-world data. This study proposes to use academic social networks as a proxy for investigating recommendation systems in social media. By employing Graph Neural Networks (GNNs), we develop a model that separates the prediction of academic infosphere from behavior prediction, allowing us to simulate recommender-generated infospheres and assess the model's performance in predicting future co-authorships. Our approach aims to improve our understanding of recommendation systems' roles and social networks modeling. To support the reproducibility of our work we publicly make available our implementations: https://github.com/DimNeuroLab/academic_network_project
Abstract:In the era of 6G, developing and managing software requires cutting-edge software engineering (SE) theories and practices tailored for such complexity across a vast number of connected edge devices. Our project aims to lead the development of sustainable methods and energy-efficient orchestration models specifically for edge environments, enhancing architectural support driven by AI for contemporary edge-to-cloud continuum computing. This initiative seeks to position Finland at the forefront of the 6G landscape, focusing on sophisticated edge orchestration and robust software architectures to optimize the performance and scalability of edge networks. Collaborating with leading Finnish universities and companies, the project emphasizes deep industry-academia collaboration and international expertise to address critical challenges in edge orchestration and software architecture, aiming to drive significant advancements in software productivity and market impact.
Abstract:Quantum computing, albeit readily available as hardware or emulated on the cloud, is still far from being available in general regarding complex programming paradigms and learning curves. This vision paper introduces $Classi|Q\rangle$, a translation framework idea to bridge Classical and Quantum Computing by translating high-level programming languages, e.g., Python or C++, into a low-level language, e.g., Quantum Assembly. Our idea paper serves as a blueprint for ongoing efforts in quantum software engineering, offering a roadmap for further $Classi|Q\rangle$ development to meet the diverse needs of researchers and practitioners. $Classi|Q\rangle$ is designed to empower researchers and practitioners with no prior quantum experience to harness the potential of hybrid quantum computation. We also discuss future enhancements to $Classi|Q\rangle$, including support for additional quantum languages, improved optimization strategies, and integration with emerging quantum computing platforms.
Abstract:Artificial intelligence's progress holds great promise in assisting society in addressing pressing societal issues. In particular Large Language Models (LLM) and the derived chatbots, like ChatGPT, have highly improved the natural language processing capabilities of AI systems allowing them to process an unprecedented amount of unstructured data. The consequent hype has also backfired, raising negative sentiment even after novel AI methods' surprising contributions. One of the causes, but also an important issue per se, is the rising and misleading feeling of being able to access and process any form of knowledge to solve problems in any domain with no effort or previous expertise in AI or problem domain, disregarding current LLMs limits, such as hallucinations and reasoning limits. Acknowledging AI fallibility is crucial to address the impact of dogmatic overconfidence in possibly erroneous suggestions generated by LLMs. At the same time, it can reduce fear and other negative attitudes toward AI. AI literacy interventions are necessary that allow the public to understand such LLM limits and learn how to use them in a more effective manner, i.e. learning to "prompt". With this aim, a pilot educational intervention was performed in a high school with 30 students. It involved (i) presenting high-level concepts about intelligence, AI, and LLM, (ii) an initial naive practice with ChatGPT in a non-trivial task, and finally (iii) applying currently-accepted prompting strategies. Encouraging preliminary results have been collected such as students reporting a) high appreciation of the activity, b) improved quality of the interaction with the LLM during the educational activity, c) decreased negative sentiments toward AI, d) increased understanding of limitations and specifically We aim to study factors that impact AI acceptance and to refine and repeat this activity in more controlled settings.
Abstract:Microservices is a popular architectural style for the development of distributed software, with an emphasis on modularity, scalability, and flexibility. Indeed, in microservice systems, functionalities are provided by loosely coupled, small services, each focusing on a specific business capability. Building a system according to the microservices architectural style brings a number of challenges, mainly related to how the different microservices are deployed and coordinated and how they interact. In this paper, we provide a survey about how techniques in the area of Artificial Intelligence have been used to tackle these challenges.