Abstract:Unbiased representation learning is still an object of study under specific applications and contexts. Novel architectures are usually crafted to resolve particular problems using mixtures of fundamental pieces. This paper presents different image feature extraction mechanisms that work together with residual connections to encode perceptual image information in an autoencoder configuration. We use image data that aims to support a larger research agenda dealing with issues regarding criminal activity in consumer-to-consumer online platforms. Preliminary results suggest that the proposed architecture can learn rich spaces using ours and other image datasets resolving important challenges that are identified.
Abstract:Concerns regarding the propensity of Large Language Models (LLMs) to produce inaccurate outputs, also known as hallucinations, have escalated. Detecting them is vital for ensuring the reliability of applications relying on LLM-generated content. Current methods often demand substantial resources and rely on extensive LLMs or employ supervised learning with multidimensional features or intricate linguistic and semantic analyses difficult to reproduce and largely depend on using the same LLM that hallucinated. This paper introduces a supervised learning approach employing two simple classifiers utilizing only four numerical features derived from tokens and vocabulary probabilities obtained from other LLM evaluators, which are not necessarily the same. The method yields promising results, surpassing state-of-the-art outcomes in multiple tasks across three different benchmarks. Additionally, we provide a comprehensive examination of the strengths and weaknesses of our approach, highlighting the significance of the features utilized and the LLM employed as an evaluator. We have released our code publicly at https://github.com/Baylor-AI/HalluDetect.
Abstract:Our study addresses the challenges of building datasets to understand the risks associated with organized activities and human trafficking through commercial sex advertisements. These challenges include data scarcity, rapid obsolescence, and privacy concerns. Traditional approaches, which are not automated and are difficult to reproduce, fall short in addressing these issues. We have developed a reproducible and automated methodology to analyze five million advertisements. In the process, we identified further challenges in dataset creation within this sensitive domain. This paper presents a streamlined methodology to assist researchers in constructing effective datasets for combating organized crime, allowing them to focus on advancing detection technologies.