Abstract:Despite the mounting anticipation for the quantum revolution, the success of Quantum Machine Learning (QML) in the Noisy Intermediate-Scale Quantum (NISQ) era hinges on a largely unexplored factor: the generalization error bound, a cornerstone of robust and reliable machine learning models. Current QML research, while exploring novel algorithms and applications extensively, is predominantly situated in the context of noise-free, ideal quantum computers. However, Quantum Circuit (QC) operations in NISQ-era devices are susceptible to various noise sources and errors. In this article, we conduct a Systematic Mapping Study (SMS) to explore the state-of-the-art generalization bound for supervised QML in NISQ-era and analyze the latest practices in the field. Our study systematically summarizes the existing computational platforms with quantum hardware, datasets, optimization techniques, and the common properties of the bounds found in the literature. We further present the performance accuracy of various approaches in classical benchmark datasets like the MNIST and IRIS datasets. The SMS also highlights the limitations and challenges in QML in the NISQ era and discusses future research directions to advance the field. Using a detailed Boolean operators query in five reliable indexers, we collected 544 papers and filtered them to a small set of 37 relevant articles. This filtration was done following the best practice of SMS with well-defined research questions and inclusion and exclusion criteria.
Abstract:Concerns regarding the propensity of Large Language Models (LLMs) to produce inaccurate outputs, also known as hallucinations, have escalated. Detecting them is vital for ensuring the reliability of applications relying on LLM-generated content. Current methods often demand substantial resources and rely on extensive LLMs or employ supervised learning with multidimensional features or intricate linguistic and semantic analyses difficult to reproduce and largely depend on using the same LLM that hallucinated. This paper introduces a supervised learning approach employing two simple classifiers utilizing only four numerical features derived from tokens and vocabulary probabilities obtained from other LLM evaluators, which are not necessarily the same. The method yields promising results, surpassing state-of-the-art outcomes in multiple tasks across three different benchmarks. Additionally, we provide a comprehensive examination of the strengths and weaknesses of our approach, highlighting the significance of the features utilized and the LLM employed as an evaluator. We have released our code publicly at https://github.com/Baylor-AI/HalluDetect.