Abstract:Unbiased representation learning is still an object of study under specific applications and contexts. Novel architectures are usually crafted to resolve particular problems using mixtures of fundamental pieces. This paper presents different image feature extraction mechanisms that work together with residual connections to encode perceptual image information in an autoencoder configuration. We use image data that aims to support a larger research agenda dealing with issues regarding criminal activity in consumer-to-consumer online platforms. Preliminary results suggest that the proposed architecture can learn rich spaces using ours and other image datasets resolving important challenges that are identified.
Abstract:Our study addresses the challenges of building datasets to understand the risks associated with organized activities and human trafficking through commercial sex advertisements. These challenges include data scarcity, rapid obsolescence, and privacy concerns. Traditional approaches, which are not automated and are difficult to reproduce, fall short in addressing these issues. We have developed a reproducible and automated methodology to analyze five million advertisements. In the process, we identified further challenges in dataset creation within this sensitive domain. This paper presents a streamlined methodology to assist researchers in constructing effective datasets for combating organized crime, allowing them to focus on advancing detection technologies.