Abstract:In the era of 6G, developing and managing software requires cutting-edge software engineering (SE) theories and practices tailored for such complexity across a vast number of connected edge devices. Our project aims to lead the development of sustainable methods and energy-efficient orchestration models specifically for edge environments, enhancing architectural support driven by AI for contemporary edge-to-cloud continuum computing. This initiative seeks to position Finland at the forefront of the 6G landscape, focusing on sophisticated edge orchestration and robust software architectures to optimize the performance and scalability of edge networks. Collaborating with leading Finnish universities and companies, the project emphasizes deep industry-academia collaboration and international expertise to address critical challenges in edge orchestration and software architecture, aiming to drive significant advancements in software productivity and market impact.
Abstract:Context. Risk analysis assesses potential risks in specific scenarios. Risk analysis principles are context-less; the same methodology can be applied to a risk connected to health and information technology security. Risk analysis requires a vast knowledge of national and international regulations and standards and is time and effort-intensive. A large language model can quickly summarize information in less time than a human and can be fine-tuned to specific tasks. Aim. Our empirical study aims to investigate the effectiveness of Retrieval-Augmented Generation and fine-tuned LLM in Risk analysis. To our knowledge, no prior study has explored its capabilities in risk analysis. Method. We manually curated \totalscenarios unique scenarios leading to \totalsamples representative samples from over 50 mission-critical analyses archived by the industrial context team in the last five years. We compared the base GPT-3.5 and GPT-4 models versus their Retrieval-Augmented Generation and fine-tuned counterparts. We employ two human experts as competitors of the models and three other three human experts to review the models and the former human expert's analysis. The reviewers analyzed 5,000 scenario analyses. Results and Conclusions. HEs demonstrated higher accuracy, but LLMs are quicker and more actionable. Moreover, our findings show that RAG-assisted LLMs have the lowest hallucination rates, effectively uncovering hidden risks and complementing human expertise. Thus, the choice of model depends on specific needs, with FTMs for accuracy, RAG for hidden risks discovery, and base models for comprehensiveness and actionability. Therefore, experts can leverage LLMs for an effective complementing companion in risk analysis within a condensed timeframe. They can also save costs by averting unnecessary expenses associated with implementing unwarranted countermeasures.
Abstract:Quantum computing, albeit readily available as hardware or emulated on the cloud, is still far from being available in general regarding complex programming paradigms and learning curves. This vision paper introduces $Classi|Q\rangle$, a translation framework idea to bridge Classical and Quantum Computing by translating high-level programming languages, e.g., Python or C++, into a low-level language, e.g., Quantum Assembly. Our idea paper serves as a blueprint for ongoing efforts in quantum software engineering, offering a roadmap for further $Classi|Q\rangle$ development to meet the diverse needs of researchers and practitioners. $Classi|Q\rangle$ is designed to empower researchers and practitioners with no prior quantum experience to harness the potential of hybrid quantum computation. We also discuss future enhancements to $Classi|Q\rangle$, including support for additional quantum languages, improved optimization strategies, and integration with emerging quantum computing platforms.
Abstract:Preliminary security risk analysis (PSRA) provides a quick approach to identify, evaluate and propose remeditation to potential risks in specific scenarios. The extensive expertise required for an effective PSRA and the substantial ammount of textual-related tasks hinder quick assessments in mission-critical contexts, where timely and prompt actions are essential. The speed and accuracy of human experts in PSRA significantly impact response time. A large language model can quickly summarise information in less time than a human. To our knowledge, no prior study has explored the capabilities of fine-tuned models (FTM) in PSRA. Our case study investigates the proficiency of FTM to assist practitioners in PSRA. We manually curated 141 representative samples from over 50 mission-critical analyses archived by the industrial context team in the last five years.We compared the proficiency of the FTM versus seven human experts. Within the industrial context, our approach has proven successful in reducing errors in PSRA, hastening security risk detection, and minimizing false positives and negatives. This translates to cost savings for the company by averting unnecessary expenses associated with implementing unwarranted countermeasures. Therefore, experts can focus on more comprehensive risk analysis, leveraging LLMs for an effective preliminary assessment within a condensed timeframe.