Abstract:The widespread use of social media has highlighted potential negative impacts on society and individuals, largely driven by recommendation algorithms that shape user behavior and social dynamics. Understanding these algorithms is essential but challenging due to the complex, distributed nature of social media networks as well as limited access to real-world data. This study proposes to use academic social networks as a proxy for investigating recommendation systems in social media. By employing Graph Neural Networks (GNNs), we develop a model that separates the prediction of academic infosphere from behavior prediction, allowing us to simulate recommender-generated infospheres and assess the model's performance in predicting future co-authorships. Our approach aims to improve our understanding of recommendation systems' roles and social networks modeling. To support the reproducibility of our work we publicly make available our implementations: https://github.com/DimNeuroLab/academic_network_project
Abstract:The purpose of this work is to investigate the soundness and utility of a neural network-based approach as a framework for exploring the impact of image enhancement techniques on visual cortex activation. In a preliminary study, we prepare a set of state-of-the-art brain encoding models, selected among the top 10 methods that participated in The Algonauts Project 2023 Challenge [16]. We analyze their ability to make valid predictions about the effects of various image enhancement techniques on neural responses. Given the impossibility of acquiring the actual data due to the high costs associated with brain imaging procedures, our investigation builds up on a series of experiments. Specifically, we analyze the ability of brain encoders to estimate the cerebral reaction to various augmentations by evaluating the response to augmentations targeting objects (i.e., faces and words) with known impact on specific areas. Moreover, we study the predicted activation in response to objects unseen during training, exploring the impact of semantically out-of-distribution stimuli. We provide relevant evidence for the generalization ability of the models forming the proposed framework, which appears to be promising for the identification of the optimal visual augmentation filter for a given task, model-driven design strategies as well as for AR and VR applications.
Abstract:Theory of Mind (ToM), the ability to attribute beliefs, intentions, or mental states to others, is a crucial feature of human social interaction. In complex environments, where the human sensory system reaches its limits, behaviour is strongly driven by our beliefs about the state of the world around us. Accessing others' mental states, e.g., beliefs and intentions, allows for more effective social interactions in natural contexts. Yet, these variables are not directly observable, making understanding ToM a challenging quest of interest for different fields, including psychology, machine learning and robotics. In this paper, we contribute to this topic by showing a developmental synergy between learning to predict low-level mental states (e.g., intentions, goals) and attributing high-level ones (i.e., beliefs). Specifically, we assume that learning beliefs attribution can occur by observing one's own decision processes involving beliefs, e.g., in a partially observable environment. Using a simple feed-forward deep learning model, we show that, when learning to predict others' intentions and actions, more accurate predictions can be acquired earlier if beliefs attribution is learnt simultaneously. Furthermore, we show that the learning performance improves even when observed actors have a different embodiment than the observer and the gain is higher when observing beliefs-driven chunks of behaviour. We propose that our computational approach can inform the understanding of human social cognitive development and be relevant for the design of future adaptive social robots able to autonomously understand, assist, and learn from human interaction partners in novel natural environments and tasks.
Abstract:We present an exploration of machine learning architectures for predicting brain responses to realistic images on occasion of the Algonauts Challenge 2023. Our research involved extensive experimentation with various pretrained models. Initially, we employed simpler models to predict brain activity but gradually introduced more complex architectures utilizing available data and embeddings generated by large-scale pre-trained models. We encountered typical difficulties related to machine learning problems, e.g. regularization and overfitting, as well as issues specific to the challenge, such as difficulty in combining multiple input encodings, as well as the high dimensionality, unclear structure, and noisy nature of the output. To overcome these issues we tested single edge 3D position-based, multi-region of interest (ROI) and hemisphere predictor models, but we found that employing multiple simple models, each dedicated to a ROI in each hemisphere of the brain of each subject, yielded the best results - a single fully connected linear layer with image embeddings generated by CLIP as input. While we surpassed the challenge baseline, our results fell short of establishing a robust association with the data.
Abstract:Artificial intelligence's progress holds great promise in assisting society in addressing pressing societal issues. In particular Large Language Models (LLM) and the derived chatbots, like ChatGPT, have highly improved the natural language processing capabilities of AI systems allowing them to process an unprecedented amount of unstructured data. The consequent hype has also backfired, raising negative sentiment even after novel AI methods' surprising contributions. One of the causes, but also an important issue per se, is the rising and misleading feeling of being able to access and process any form of knowledge to solve problems in any domain with no effort or previous expertise in AI or problem domain, disregarding current LLMs limits, such as hallucinations and reasoning limits. Acknowledging AI fallibility is crucial to address the impact of dogmatic overconfidence in possibly erroneous suggestions generated by LLMs. At the same time, it can reduce fear and other negative attitudes toward AI. AI literacy interventions are necessary that allow the public to understand such LLM limits and learn how to use them in a more effective manner, i.e. learning to "prompt". With this aim, a pilot educational intervention was performed in a high school with 30 students. It involved (i) presenting high-level concepts about intelligence, AI, and LLM, (ii) an initial naive practice with ChatGPT in a non-trivial task, and finally (iii) applying currently-accepted prompting strategies. Encouraging preliminary results have been collected such as students reporting a) high appreciation of the activity, b) improved quality of the interaction with the LLM during the educational activity, c) decreased negative sentiments toward AI, d) increased understanding of limitations and specifically We aim to study factors that impact AI acceptance and to refine and repeat this activity in more controlled settings.
Abstract:Educational chatbots come with a promise of interactive and personalized learning experiences, yet their development has been limited by the restricted free interaction capabilities of available platforms and the difficulty of encoding knowledge in a suitable format. Recent advances in language learning models with zero-shot learning capabilities, such as ChatGPT, suggest a new possibility for developing educational chatbots using a prompt-based approach. We present a case study with a simple system that enables mixed-turn chatbot interactions and we discuss the insights and preliminary guidelines obtained from initial tests. We examine ChatGPT's ability to pursue multiple interconnected learning objectives, adapt the educational activity to users' characteristics, such as culture, age, and level of education, and its ability to use diverse educational strategies and conversational styles. Although the results are encouraging, challenges are posed by the limited history maintained for the conversation and the highly structured form of responses by ChatGPT, as well as their variability, which can lead to an unexpected switch of the chatbot's role from a teacher to a therapist. We provide some initial guidelines to address these issues and to facilitate the development of effective educational chatbots.
Abstract:In human spatial awareness, information appears to be represented according to 3-D projective geometry. It structures information integration and action planning within an internal representation space. The way different first person perspectives of an agent relate to each other, through transformations of a world model, defines a specific perception scheme for the agent. In mathematics, this collection of transformations is called a `group' and it characterizes a geometric space by acting on it. We propose that imbuing world models with a `geometric' structure, given by a group, is one way to capture different perception schemes of agents. We explore how changing the geometric structure of a world model impacts the behavior of an agent. In particular, we focus on how such geometrical operations transform the formal expression of epistemic value in active inference as driving an agent's curiosity about its environment, and impact exploration behaviors accordingly. We used group action as a special class of policies for perspective-dependent control. We compared the Euclidean versus projective groups. We formally demonstrate that the groups induce distinct behaviors. The projective group induces nonlinear contraction and dilatation that transform entropy and epistemic value as a function of the choice of frame, which fosters exploration behaviors. This contribution opens research avenues in which a geometry structures \textit{a priori} an agent's internal representation space for information integration and action planning.
Abstract:Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in cognitive and developmental robotics. Their learning processes should be based on interactions with their physical and social world in the manner of human learning and cognitive development. Based on this context, in this paper, we focus on the two concepts of world models and predictive coding. Recently, world models have attracted renewed attention as a topic of considerable interest in artificial intelligence. Cognitive systems learn world models to better predict future sensory observations and optimize their policies, i.e., controllers. Alternatively, in neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment. Both ideas may be considered as underpinning the cognitive development of robots and humans capable of continual or lifelong learning. Although many studies have been conducted on predictive coding in cognitive robotics and neurorobotics, the relationship between world model-based approaches in AI and predictive coding in robotics has rarely been discussed. Therefore, in this paper, we clarify the definitions, relationships, and status of current research on these topics, as well as missing pieces of world models and predictive coding in conjunction with crucially related concepts such as the free-energy principle and active inference in the context of cognitive and developmental robotics. Furthermore, we outline the frontiers and challenges involved in world models and predictive coding toward the further integration of AI and robotics, as well as the creation of robots with real cognitive and developmental capabilities in the future.
Abstract:In complex environments, where the human sensory system reaches its limits, our behaviour is strongly driven by our beliefs about the state of the world around us. Accessing others' beliefs, intentions, or mental states in general, could thus allow for more effective social interactions in natural contexts. Yet these variables are not directly observable. Theory of Mind (TOM), the ability to attribute to other agents' beliefs, intentions, or mental states in general, is a crucial feature of human social interaction and has become of interest to the robotics community. Recently, new models that are able to learn TOM have been introduced. In this paper, we show the synergy between learning to predict low-level mental states, such as intentions and goals, and attributing high-level ones, such as beliefs. Assuming that learning of beliefs can take place by observing own decision and beliefs estimation processes in partially observable environments and using a simple feed-forward deep learning model, we show that when learning to predict others' intentions and actions, faster and more accurate predictions can be acquired if beliefs attribution is learnt simultaneously with action and intentions prediction. We show that the learning performance improves even when observing agents with a different decision process and is higher when observing beliefs-driven chunks of behaviour. We propose that our architectural approach can be relevant for the design of future adaptive social robots that should be able to autonomously understand and assist human partners in novel natural environments and tasks.
Abstract:Monitoring crop fields to map features like weeds can be efficiently performed with unmanned aerial vehicles (UAVs) that can cover large areas in a short time due to their privileged perspective and motion speed. However, the need for high-resolution images for precise classification of features (e.g., detecting even the smallest weeds in the field) contrasts with the limited payload and ight time of current UAVs. Thus, it requires several flights to cover a large field uniformly. However, the assumption that the whole field must be observed with the same precision is unnecessary when features are heterogeneously distributed, like weeds appearing in patches over the field. In this case, an adaptive approach that focuses only on relevant areas can perform better, especially when multiple UAVs are employed simultaneously. Leveraging on a swarm-robotics approach, we propose a monitoring and mapping strategy that adaptively chooses the target areas based on the expected information gain, which measures the potential for uncertainty reduction due to further observations. The proposed strategy scales well with group size and leads to smaller mapping errors than optimal pre-planned monitoring approaches.