Abstract:The classification of short texts is a common subtask in Information Retrieval (IR). Recent advances in graph machine learning have led to interest in graph-based approaches for low resource scenarios, showing promise in such settings. However, existing methods face limitations such as not accounting for different meanings of the same words or constraints from transductive approaches. We propose an approach which constructs text graphs entirely based on tokens obtained through pre-trained language models (PLMs). By applying a PLM to tokenize and embed the texts when creating the graph(-nodes), our method captures contextual and semantic information, overcomes vocabulary constraints, and allows for context-dependent word meanings. Our approach also makes classification more efficient with reduced parameters compared to classical PLM fine-tuning, resulting in more robust training with few samples. Experimental results demonstrate how our method consistently achieves higher scores or on-par performance with existing methods, presenting an advancement in graph-based text classification techniques. To support reproducibility of our work we make all implementations publicly available to the community\footnote{\url{https://github.com/doGregor/TokenGraph}}.
Abstract:We present BioRAGent, an interactive web-based retrieval-augmented generation (RAG) system for biomedical question answering. The system uses large language models (LLMs) for query expansion, snippet extraction, and answer generation while maintaining transparency through citation links to the source documents and displaying generated queries for further editing. Building on our successful participation in the BioASQ 2024 challenge, we demonstrate how few-shot learning with LLMs can be effectively applied for a professional search setting. The system supports both direct short paragraph style responses and responses with inline citations. Our demo is available online, and the source code is publicly accessible through GitHub.
Abstract:As artificial intelligence (AI) becomes increasingly embedded in daily life, designing intuitive, trustworthy, and emotionally resonant AI-human interfaces has emerged as a critical challenge. This editorial introduces a Special Issue that explores the psychology of AI experience design, focusing on how interfaces can foster seamless collaboration between humans and machines. Drawing on insights from diverse fields (healthcare, consumer technology, workplace dynamics, and cultural sector), the papers in this collection highlight the complexities of trust, transparency, and emotional sensitivity in human-AI interaction. Key themes include designing AI systems that align with user perceptions and expectations, overcoming resistance through transparency and trust, and framing AI capabilities to reduce user anxiety. By synthesizing findings from eight diverse studies, this editorial underscores the need for AI interfaces to balance efficiency with empathy, addressing both functional and emotional dimensions of user experience. Ultimately, it calls for actionable frameworks to bridge research and practice, ensuring that AI systems enhance human lives through thoughtful, human-centered design.
Abstract:The widespread use of social media has highlighted potential negative impacts on society and individuals, largely driven by recommendation algorithms that shape user behavior and social dynamics. Understanding these algorithms is essential but challenging due to the complex, distributed nature of social media networks as well as limited access to real-world data. This study proposes to use academic social networks as a proxy for investigating recommendation systems in social media. By employing Graph Neural Networks (GNNs), we develop a model that separates the prediction of academic infosphere from behavior prediction, allowing us to simulate recommender-generated infospheres and assess the model's performance in predicting future co-authorships. Our approach aims to improve our understanding of recommendation systems' roles and social networks modeling. To support the reproducibility of our work we publicly make available our implementations: https://github.com/DimNeuroLab/academic_network_project
Abstract:Commercial large language models (LLMs), like OpenAI's GPT-4 powering ChatGPT and Anthropic's Claude 3 Opus, have dominated natural language processing (NLP) benchmarks across different domains. New competing Open-Source alternatives like Mixtral 8x7B or Llama 3 have emerged and seem to be closing the gap while often offering higher throughput and being less costly to use. Open-Source LLMs can also be self-hosted, which makes them interesting for enterprise and clinical use cases where sensitive data should not be processed by third parties. We participated in the 12th BioASQ challenge, which is a retrieval augmented generation (RAG) setting, and explored the performance of current GPT models Claude 3 Opus, GPT-3.5-turbo and Mixtral 8x7b with in-context learning (zero-shot, few-shot) and QLoRa fine-tuning. We also explored how additional relevant knowledge from Wikipedia added to the context-window of the LLM might improve their performance. Mixtral 8x7b was competitive in the 10-shot setting, both with and without fine-tuning, but failed to produce usable results in the zero-shot setting. QLoRa fine-tuning and Wikipedia context did not lead to measurable performance gains. Our results indicate that the performance gap between commercial and open-source models in RAG setups exists mainly in the zero-shot setting and can be closed by simply collecting few-shot examples for domain-specific use cases. The code needed to rerun these experiments is available through GitHub.
Abstract:Machine Translation has made impressive progress in recent years offering close to human-level performance on many languages, but studies have primarily focused on high-resource languages with broad online presence and resources. With the help of growing Large Language Models, more and more low-resource languages achieve better results through the presence of other languages. However, studies have shown that not all low-resource languages can benefit from multilingual systems, especially those with insufficient training and evaluation data. In this paper, we revisit state-of-the-art Neural Machine Translation techniques to develop automatic translation systems between German and Bavarian. We investigate conditions of low-resource languages such as data scarcity and parameter sensitivity and focus on refined solutions that combat low-resource difficulties and creative solutions such as harnessing language similarity. Our experiment entails applying Back-translation and Transfer Learning to automatically generate more training data and achieve higher translation performance. We demonstrate noisiness in the data and present our approach to carry out text preprocessing extensively. Evaluation was conducted using combined metrics: BLEU, chrF and TER. Statistical significance results with Bonferroni correction show surprisingly high baseline systems, and that Back-translation leads to significant improvement. Furthermore, we present a qualitative analysis of translation errors and system limitations.
Abstract:Pre-training of neural networks has recently revolutionized the field of Natural Language Processing (NLP) and has before demonstrated its effectiveness in computer vision. At the same time, advances around the detection of fake news were mainly driven by the context-based paradigm, where different types of signals (e.g. from social media) form graph-like structures that hold contextual information apart from the news article to classify. We propose to merge these two developments by applying pre-training of Graph Neural Networks (GNNs) in the domain of context-based fake news detection. Our experiments provide an evaluation of different pre-training strategies for graph-based misinformation detection and demonstrate that transfer learning does currently not lead to significant improvements over training a model from scratch in the domain. We argue that a major current issue is the lack of suitable large-scale resources that can be used for pre-training.
Abstract:We assessed the performance of commercial Large Language Models (LLMs) GPT-3.5-Turbo and GPT-4 on tasks from the 2023 BioASQ challenge. In Task 11b Phase B, which is focused on answer generation, both models demonstrated competitive abilities with leading systems. Remarkably, they achieved this with simple zero-shot learning, grounded with relevant snippets. Even without relevant snippets, their performance was decent, though not on par with the best systems. Interestingly, the older and cheaper GPT-3.5-Turbo system was able to compete with GPT-4 in the grounded Q&A setting on factoid and list answers. In Task 11b Phase A, focusing on retrieval, query expansion through zero-shot learning improved performance, but the models fell short compared to other systems. The code needed to rerun these experiments is available through GitHub.
Abstract:Fake news detection has become a research area that goes way beyond a purely academic interest as it has direct implications on our society as a whole. Recent advances have primarily focused on textbased approaches. However, it has become clear that to be effective one needs to incorporate additional, contextual information such as spreading behaviour of news articles and user interaction patterns on social media. We propose to construct heterogeneous social context graphs around news articles and reformulate the problem as a graph classification task. Exploring the incorporation of different types of information (to get an idea as to what level of social context is most effective) and using different graph neural network architectures indicates that this approach is highly effective with robust results on a common benchmark dataset.
Abstract:Although several datasets annotated for anaphoric reference/coreference exist, even the largest such datasets have limitations in terms of size, range of domains, coverage of anaphoric phenomena, and size of documents included. Yet, the approaches proposed to scale up anaphoric annotation haven't so far resulted in datasets overcoming these limitations. In this paper, we introduce a new release of a corpus for anaphoric reference labelled via a game-with-a-purpose. This new release is comparable in size to the largest existing corpora for anaphoric reference due in part to substantial activity by the players, in part thanks to the use of a new resolve-and-aggregate paradigm to 'complete' markable annotations through the combination of an anaphoric resolver and an aggregation method for anaphoric reference. The proposed method could be adopted to greatly speed up annotation time in other projects involving games-with-a-purpose. In addition, the corpus covers genres for which no comparable size datasets exist (Fiction and Wikipedia); it covers singletons and non-referring expressions; and it includes a substantial number of long documents (> 2K in length).