Abstract:Utterances by L2 speakers can be unintelligible due to mispronunciation and improper prosody. In computer-aided language learning systems, textual feedback is often provided using a speech recognition engine. However, an ideal form of feedback for L2 speakers should be so fine-grained that it enables them to detect and diagnose unintelligible parts of L2 speakers' utterances. Inspired by language teachers who correct students' pronunciation through a voice-to-voice process, this pilot study utilizes a unique semi-parallel dataset composed of non-native speakers' (L2) reading aloud, shadowing of native speakers (L1) and their script-shadowing utterances. We explore the technical possibility of replicating the process of an L1 speaker's shadowing L2 speech using Voice Conversion techniques, to create a virtual shadower system. Experimental results demonstrate the feasibility of the VC system in simulating L1's shadowing behavior. The output of the virtual shadower system shows a reasonable similarity to the real L1 shadowing utterances in both linguistic and acoustic aspects.
Abstract:Evaluating speech intelligibility is a critical task in computer-aided language learning systems. Traditional methods often rely on word error rates (WER) provided by automatic speech recognition (ASR) as intelligibility scores. However, this approach has significant limitations due to notable differences between human speech recognition (HSR) and ASR. A promising alternative is to involve a native (L1) speaker in shadowing what nonnative (L2) speakers say. Breakdowns or mispronunciations in the L1 speaker's shadowing utterance can serve as indicators for assessing L2 speech intelligibility. In this study, we propose a speech generation system that simulates the L1 shadowing process using voice conversion (VC) techniques and latent speech representations. Our experimental results demonstrate that this method effectively replicates the L1 shadowing process, offering an innovative tool to evaluate L2 speech intelligibility. Notably, systems that utilize self-supervised speech representations (S3R) show a higher degree of similarity to real L1 shadowing utterances in both linguistic accuracy and naturalness.
Abstract:We propose a method of simulating the human process of foreign accentuation using Generative Spoken Language Model (GSLM) only with native speech corpora. When one listens to spoken words of a foreign language and repeats them, the repeated speech is often with the accent of that listener's L1. This is said to be because the spoken words are mentally represented as a sequence of phonological units of the L1, and those units are used for oral reproduction. We simulate this process by inputting speech of language A into GSLM of language B to add B's accent onto the input speech. The process of running ASR of the L1 for foreign input speech and giving the ASR result to TTS of the L1 can be viewed as a naive implementation of this approach. The results of our experiments show that the synthesized accent of the output speech is highly natural, compared to real samples of A generated by speakers whose L1 is B, and that the degree of accentuation is controllable.
Abstract:In this study, we investigate whether speech symbols, learned through deep learning, follow Zipf's law, akin to natural language symbols. Zipf's law is an empirical law that delineates the frequency distribution of words, forming fundamentals for statistical analysis in natural language processing. Natural language symbols, which are invented by humans to symbolize speech content, are recognized to comply with this law. On the other hand, recent breakthroughs in spoken language processing have given rise to the development of learned speech symbols; these are data-driven symbolizations of speech content. Our objective is to ascertain whether these data-driven speech symbols follow Zipf's law, as the same as natural language symbols. Through our investigation, we aim to forge new ways for the statistical analysis of spoken language processing.
Abstract:Previous machine learning (ML) system development research suggests that emerging software quality attributes are a concern due to the probabilistic behavior of ML systems. Assuming that detailed development processes depend on individual developers and are not discussed in detail. To help developers to standardize their ML system development processes, we conduct a preliminary systematic literature review on ML system development processes. A search query of 2358 papers identified 7 papers as well as two other papers determined in an ad-hoc review. Our findings include emphasized phases in ML system developments, frequently described practices and tailored traditional software development practices.
Abstract:Voice conversion (VC) aims at conversion of speaker characteristic without altering content. Due to training data limitations and modeling imperfections, it is difficult to achieve believable speaker mimicry without introducing processing artifacts; performance assessment of VC, therefore, usually involves both speaker similarity and quality evaluation by a human panel. As a time-consuming, expensive, and non-reproducible process, it hinders rapid prototyping of new VC technology. We address artifact assessment using an alternative, objective approach leveraging from prior work on spoofing countermeasures (CMs) for automatic speaker verification. Therein, CMs are used for rejecting `fake' inputs such as replayed, synthetic or converted speech but their potential for automatic speech artifact assessment remains unknown. This study serves to fill that gap. As a supplement to subjective results for the 2018 Voice Conversion Challenge (VCC'18) data, we configure a standard constant-Q cepstral coefficient CM to quantify the extent of processing artifacts. Equal error rate (EER) of the CM, a confusability index of VC samples with real human speech, serves as our artifact measure. Two clusters of VCC'18 entries are identified: low-quality ones with detectable artifacts (low EERs), and higher quality ones with less artifacts. None of the VCC'18 systems, however, is perfect: all EERs are < 30 % (the `ideal' value would be 50 %). Our preliminary findings suggest potential of CMs outside of their original application, as a supplemental optimization and benchmarking tool to enhance VC technology.
Abstract:Recent neural networks such as WaveNet and sampleRNN that learn directly from speech waveform samples have achieved very high-quality synthetic speech in terms of both naturalness and speaker similarity even in multi-speaker text-to-speech synthesis systems. Such neural networks are being used as an alternative to vocoders and hence they are often called neural vocoders. The neural vocoder uses acoustic features as local condition parameters, and these parameters need to be accurately predicted by another acoustic model. However, it is not yet clear how to train this acoustic model, which is problematic because the final quality of synthetic speech is significantly affected by the performance of the acoustic model. Significant degradation happens, especially when predicted acoustic features have mismatched characteristics compared to natural ones. In order to reduce the mismatched characteristics between natural and generated acoustic features, we propose frameworks that incorporate either a conditional generative adversarial network (GAN) or its variant, Wasserstein GAN with gradient penalty (WGAN-GP), into multi-speaker speech synthesis that uses the WaveNet vocoder. We also extend the GAN frameworks and use the discretized mixture logistic loss of a well-trained WaveNet in addition to mean squared error and adversarial losses as parts of objective functions. Experimental results show that acoustic models trained using the WGAN-GP framework using back-propagated discretized-mixture-of-logistics (DML) loss achieves the highest subjective evaluation scores in terms of both quality and speaker similarity.
Abstract:We present the Voice Conversion Challenge 2018, designed as a follow up to the 2016 edition with the aim of providing a common framework for evaluating and comparing different state-of-the-art voice conversion (VC) systems. The objective of the challenge was to perform speaker conversion (i.e. transform the vocal identity) of a source speaker to a target speaker while maintaining linguistic information. As an update to the previous challenge, we considered both parallel and non-parallel data to form the Hub and Spoke tasks, respectively. A total of 23 teams from around the world submitted their systems, 11 of them additionally participated in the optional Spoke task. A large-scale crowdsourced perceptual evaluation was then carried out to rate the submitted converted speech in terms of naturalness and similarity to the target speaker identity. In this paper, we present a brief summary of the state-of-the-art techniques for VC, followed by a detailed explanation of the challenge tasks and the results that were obtained.