Abstract:The drafting of documents in the procurement field has progressively become more complex and diverse, driven by the need to meet legal requirements, adapt to technological advancements, and address stakeholder demands. While large language models (LLMs) show potential in document generation, most LLMs lack specialized knowledge in procurement. To address this gap, we use retrieval-augmented techniques to achieve professional document generation, ensuring accuracy and relevance in procurement documentation.
Abstract:Multimodal recommender systems utilize various types of information to model user preferences and item features, helping users discover items aligned with their interests. The integration of multimodal information mitigates the inherent challenges in recommender systems, e.g., the data sparsity problem and cold-start issues. However, it simultaneously magnifies certain risks from multimodal information inputs, such as information adjustment risk and inherent noise risk. These risks pose crucial challenges to the robustness of recommendation models. In this paper, we analyze multimodal recommender systems from the novel perspective of flat local minima and propose a concise yet effective gradient strategy called Mirror Gradient (MG). This strategy can implicitly enhance the model's robustness during the optimization process, mitigating instability risks arising from multimodal information inputs. We also provide strong theoretical evidence and conduct extensive empirical experiments to show the superiority of MG across various multimodal recommendation models and benchmarks. Furthermore, we find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models, making it a promising new and fundamental paradigm for training multimodal recommender systems. The code is released at https://github.com/Qrange-group/Mirror-Gradient.
Abstract:Aiming to ensure chatbot quality by predicting chatbot failure and enabling human-agent collaboration, Machine-Human Chatting Handoff (MHCH) has attracted lots of attention from both industry and academia in recent years. However, most existing methods mainly focus on the dialogue context or assist with global satisfaction prediction based on multi-task learning, which ignore the grounded relationships among the causal variables, like the user state and labor cost. These variables are significantly associated with handoff decisions, resulting in prediction bias and cost increasement. Therefore, we propose Causal-Enhance Module (CEM) by establishing the causal graph of MHCH based on these two variables, which is a simple yet effective module and can be easy to plug into the existing MHCH methods. For the impact of users, we use the user state to correct the prediction bias according to the causal relationship of multi-task. For the labor cost, we train an auxiliary cost simulator to calculate unbiased labor cost through counterfactual learning so that a model becomes cost-aware. Extensive experiments conducted on four real-world benchmarks demonstrate the effectiveness of CEM in generally improving the performance of existing MHCH methods without any elaborated model crafting.
Abstract:We present a multi-filtering Graph Convolution Neural Network (GCN) framework for network embedding task. It uses multiple local GCN filters to do feature extraction in every propagation layer. We show this approach could capture different important aspects of node features against the existing attribute embedding based method. We also show that with multi-filtering GCN approach, we can achieve significant improvement against baseline methods when training data is limited. We also perform many empirical experiments and demonstrate the benefit of using multiple filters against single filter as well as most current existing network embedding methods for both the link prediction and node classification tasks.
Abstract:Tencent Weibo, as one of the most popular micro-blogging services in China, has attracted millions of users, producing 30-60 millions of weibo (similar as tweet in Twitter) daily. With the overload problem of user generate content, Tencent users find it is more and more hard to browse and find valuable information at the first time. In this paper, we propose a Factor Graph based weibo recommendation algorithm TSI-WR (Topic-Level Social Influence based Weibo Recommendation), which could help Tencent users to find most suitable information. The main innovation is that we consider both direct and indirect social influence from topic level based on social balance theory. The main advantages of adopting this strategy are that it could first build a more accurate description of latent relationship between two users with weak connections, which could help to solve the data sparsity problem; second provide a more accurate recommendation for a certain user from a wider range. Other meaningful contextual information is also combined into our model, which include: Users profile, Users influence, Content of weibos, Topic information of weibos and etc. We also design a semi-supervised algorithm to further reduce the influence of data sparisty. The experiments show that all the selected variables are important and the proposed model outperforms several baseline methods.
Abstract:Mining user opinion from Micro-Blogging has been extensively studied on the most popular social networking sites such as Twitter and Facebook in the U.S., but few studies have been done on Micro-Blogging websites in other countries (e.g. China). In this paper, we analyze the social opinion influence on Tencent, one of the largest Micro-Blogging websites in China, endeavoring to unveil the behavior patterns of Chinese Micro-Blogging users. This paper proposes a Topic-Level Opinion Influence Model (TOIM) that simultaneously incorporates topic factor and social direct influence in a unified probabilistic framework. Based on TOIM, two topic level opinion influence propagation and aggregation algorithms are developed to consider the indirect influence: CP (Conservative Propagation) and NCP (None Conservative Propagation). Users' historical social interaction records are leveraged by TOIM to construct their progressive opinions and neighbors' opinion influence through a statistical learning process, which can be further utilized to predict users' future opinions on some specific topics. To evaluate and test this proposed model, an experiment was designed and a sub-dataset from Tencent Micro-Blogging was used. The experimental results show that TOIM outperforms baseline methods on predicting users' opinion. The applications of CP and NCP have no significant differences and could significantly improve recall and F1-measure of TOIM.