Abstract:Evolution Strategies (ES) have emerged as a competitive alternative for model-free reinforcement learning, showcasing exemplary performance in tasks like Mujoco and Atari. Notably, they shine in scenarios with imperfect reward functions, making them invaluable for real-world applications where dense reward signals may be elusive. Yet, an inherent assumption in ES, that all input features are task-relevant, poses challenges, especially when confronted with irrelevant features common in real-world problems. This work scrutinizes this limitation, particularly focusing on the Natural Evolution Strategies (NES) variant. We propose NESHT, a novel approach that integrates Hard-Thresholding (HT) with NES to champion sparsity, ensuring only pertinent features are employed. Backed by rigorous analysis and empirical tests, NESHT demonstrates its promise in mitigating the pitfalls of irrelevant features and shines in complex decision-making problems like noisy Mujoco and Atari tasks.
Abstract:A promising paradigm for offline reinforcement learning (RL) is to constrain the learned policy to stay close to the dataset behaviors, known as policy constraint offline RL. However, existing works heavily rely on the purity of the data, exhibiting performance degradation or even catastrophic failure when learning from contaminated datasets containing impure trajectories of diverse levels. e.g., expert level, medium level, etc., while offline contaminated data logs exist commonly in the real world. To mitigate this, we first introduce gradient penalty over the learned value function to tackle the exploding Q-functions. We then relax the closeness constraints towards non-optimal actions with critic weighted constraint relaxation. Experimental results show that the proposed techniques effectively tame the non-optimal trajectories for policy constraint offline RL methods, evaluated on a set of contaminated D4RL Mujoco and Adroit datasets.
Abstract:Scaling reinforcement learning (RL) to recommender systems (RS) is promising since maximizing the expected cumulative rewards for RL agents meets the objective of RS, i.e., improving customers' long-term satisfaction. A key approach to this goal is offline RL, which aims to learn policies from logged data. However, the high-dimensional action space and the non-stationary dynamics in commercial RS intensify distributional shift issues, making it challenging to apply offline RL methods to RS. To alleviate the action distribution shift problem in extracting RL policy from static trajectories, we propose Value Penalized Q-learning (VPQ), an uncertainty-based offline RL algorithm. It penalizes the unstable Q-values in the regression target by uncertainty-aware weights, without the need to estimate the behavior policy, suitable for RS with a large number of items. We derive the penalty weights from the variances across an ensemble of Q-functions. To alleviate distributional shift issues at test time, we further introduce the critic framework to integrate the proposed method with classic RS models. Extensive experiments conducted on two real-world datasets show that the proposed method could serve as a gain plugin for existing RS models.