Abstract:Effective action abstraction is crucial in tackling challenges associated with large action spaces in Imperfect Information Extensive-Form Games (IIEFGs). However, due to the vast state space and computational complexity in IIEFGs, existing methods often rely on fixed abstractions, resulting in sub-optimal performance. In response, we introduce RL-CFR, a novel reinforcement learning (RL) approach for dynamic action abstraction. RL-CFR builds upon our innovative Markov Decision Process (MDP) formulation, with states corresponding to public information and actions represented as feature vectors indicating specific action abstractions. The reward is defined as the expected payoff difference between the selected and default action abstractions. RL-CFR constructs a game tree with RL-guided action abstractions and utilizes counterfactual regret minimization (CFR) for strategy derivation. Impressively, it can be trained from scratch, achieving higher expected payoff without increased CFR solving time. In experiments on Heads-up No-limit Texas Hold'em, RL-CFR outperforms ReBeL's replication and Slumbot, demonstrating significant win-rate margins of $64\pm 11$ and $84\pm 17$ mbb/hand, respectively.
Abstract:Distributed quantum computing is a promising computational paradigm for performing computations that are beyond the reach of individual quantum devices. Privacy in distributed quantum computing is critical for maintaining confidentiality and protecting the data in the presence of untrusted computing nodes. In this work, we introduce novel blind quantum machine learning protocols based on the quantum bipartite correlator algorithm. Our protocols have reduced communication overhead while preserving the privacy of data from untrusted parties. We introduce robust algorithm-specific privacy-preserving mechanisms with low computational overhead that do not require complex cryptographic techniques. We then validate the effectiveness of the proposed protocols through complexity and privacy analysis. Our findings pave the way for advancements in distributed quantum computing, opening up new possibilities for privacy-aware machine learning applications in the era of quantum technologies.
Abstract:We propose the deep demixing (DDmix) model, a graph autoencoder that can reconstruct epidemics evolving over networks from partial or aggregated temporal information. Assuming knowledge of the network topology but not of the epidemic model, our goal is to estimate the complete propagation path of a disease spread. A data-driven approach is leveraged to overcome the lack of model awareness. To solve this inverse problem, DDmix is proposed as a graph conditional variational autoencoder that is trained from past epidemic spreads. DDmix seeks to capture key aspects of the underlying (unknown) spreading dynamics in its latent space. Using epidemic spreads simulated in synthetic and real-world networks, we demonstrate the accuracy of DDmix by comparing it with multiple (non-graph-aware) learning algorithms. The generalizability of DDmix is highlighted across different types of networks. Finally, we showcase that a simple post-processing extension of our proposed method can help identify super-spreaders in the reconstructed propagation path.
Abstract:Network digital twins (NDTs) facilitate the estimation of key performance indicators (KPIs) before physically implementing a network, thereby enabling efficient optimization of the network configuration. In this paper, we propose a learning-based NDT for network simulators. The proposed method offers a holistic representation of information flow in a wireless network by integrating node, edge, and path embeddings. Through this approach, the model is trained to map the network configuration to KPIs in a single forward pass. Hence, it offers a more efficient alternative to traditional simulation-based methods, thus allowing for rapid experimentation and optimization. Our proposed method has been extensively tested through comprehensive experimentation in various scenarios, including wired and wireless networks. Results show that it outperforms baseline learning models in terms of accuracy and robustness. Moreover, our approach achieves comparable performance to simulators but with significantly higher computational efficiency.
Abstract:We propose a flexible framework for defining the 1-Laplacian of a hypergraph that incorporates edge-dependent vertex weights. These weights are able to reflect varying importance of vertices within a hyperedge, thus conferring the hypergraph model higher expressivity than homogeneous hypergraphs. We then utilize the eigenvector associated with the second smallest eigenvalue of the hypergraph 1-Laplacian to cluster the vertices. From a theoretical standpoint based on an adequately defined normalized Cheeger cut, this procedure is expected to achieve higher clustering accuracy than that based on the traditional Laplacian. Indeed, we confirm that this is the case using real-world datasets to demonstrate the effectiveness of the proposed spectral clustering approach. Moreover, we show that for a special case within our framework, the corresponding hypergraph 1-Laplacian is equivalent to the 1-Laplacian of a related graph, whose eigenvectors can be computed more efficiently, facilitating the adoption on larger datasets.
Abstract:We propose a novel data-driven approach to allocate transmit power for federated learning (FL) over interference-limited wireless networks. The proposed method is useful in challenging scenarios where the wireless channel is changing during the FL training process and when the training data are not independent and identically distributed (non-i.i.d.) on the local devices. Intuitively, the power policy is designed to optimize the information received at the server end during the FL process under communication constraints. Ultimately, our goal is to improve the accuracy and efficiency of the global FL model being trained. The proposed power allocation policy is parameterized using a graph convolutional network and the associated constrained optimization problem is solved through a primal-dual (PD) algorithm. Theoretically, we show that the formulated problem has zero duality gap and, once the power policy is parameterized, optimality depends on how expressive this parameterization is. Numerically, we demonstrate that the proposed method outperforms existing baselines under different wireless channel settings and varying degrees of data heterogeneity.
Abstract:We develop a novel graph-based trainable framework to maximize the weighted sum energy efficiency (WSEE) for power allocation in wireless communication networks. To address the non-convex nature of the problem, the proposed method consists of modular structures inspired by a classical iterative suboptimal approach and enhanced with learnable components. More precisely, we propose a deep unfolding of the successive concave approximation (SCA) method. In our unfolded SCA (USCA) framework, the originally preset parameters are now learnable via graph convolutional neural networks (GCNs) that directly exploit multi-user channel state information as the underlying graph adjacency matrix. We show the permutation equivariance of the proposed architecture, which promotes generalizability across different network topologies of varying size, density, and channel distribution. The USCA framework is trained through a stochastic gradient descent approach using a progressive training strategy. The unsupervised loss is carefully devised to feature the monotonic property of the objective under maximum power constraints. Comprehensive numerical results demonstrate outstanding performance and robustness of USCA over state-of-the-art benchmarks.
Abstract:We propose a data-driven approach for power allocation in the context of federated learning (FL) over interference-limited wireless networks. The power policy is designed to maximize the transmitted information during the FL process under communication constraints, with the ultimate objective of improving the accuracy and efficiency of the global FL model being trained. The proposed power allocation policy is parameterized using a graph convolutional network and the associated constrained optimization problem is solved through a primal-dual algorithm. Numerical experiments show that the proposed method outperforms three baseline methods in both transmission success rate and FL global performance.
Abstract:We propose a novel method to co-cluster the vertices and hyperedges of hypergraphs with edge-dependent vertex weights (EDVWs). In this hypergraph model, the contribution of every vertex to each of its incident hyperedges is represented through an edge-dependent weight, conferring the model higher expressivity than the classical hypergraph. In our method, we leverage random walks with EDVWs to construct a hypergraph Laplacian and use its spectral properties to embed vertices and hyperedges in a common space. We then cluster these embeddings to obtain our proposed co-clustering method, of particular relevance in applications requiring the simultaneous clustering of data entities and features. Numerical experiments using real-world data demonstrate the effectiveness of our proposed approach in comparison with state-of-the-art alternatives.
Abstract:The effective integration of distributed solar photovoltaic (PV) arrays into existing power grids will require access to high quality data; the location, power capacity, and energy generation of individual solar PV installations. Unfortunately, existing methods for obtaining this data are limited in their spatial resolution and completeness. We propose a general framework for accurately and cheaply mapping individual PV arrays, and their capacities, over large geographic areas. At the core of this approach is a deep learning algorithm called SolarMapper - which we make publicly available - that can automatically map PV arrays in high resolution overhead imagery. We estimate the performance of SolarMapper on a large dataset of overhead imagery across three US cities in California. We also describe a procedure for deploying SolarMapper to new geographic regions, so that it can be utilized by others. We demonstrate the effectiveness of the proposed deployment procedure by using it to map solar arrays across the entire US state of Connecticut (CT). Using these results, we demonstrate that we achieve highly accurate estimates of total installed PV capacity within each of CT's 168 municipal regions.