Abstract:Fused Deposition Modeling (FDM) is a widely used additive manufacturing (AM) technique valued for its flexibility and cost-efficiency, with applications in a variety of industries including healthcare and aerospace. Recent developments have made affordable FDM machines accessible and encouraged adoption among diverse users. However, the design, planning, and production process in FDM require specialized interdisciplinary knowledge. Managing the complex parameters and resolving print defects in FDM remain challenging. These technical complexities form the most critical barrier preventing individuals without technical backgrounds and even professional engineers without training in other domains from participating in AM design and manufacturing. Large Language Models (LLMs), with their advanced capabilities in text and code processing, offer the potential for addressing these challenges in FDM. However, existing research on LLM applications in this field is limited, typically focusing on specific use cases without providing comprehensive evaluations across multiple models and tasks. To this end, we introduce FDM-Bench, a benchmark dataset designed to evaluate LLMs on FDM-specific tasks. FDM-Bench enables a thorough assessment by including user queries across various experience levels and G-code samples that represent a range of anomalies. We evaluate two closed-source models (GPT-4o and Claude 3.5 Sonnet) and two open-source models (Llama-3.1-70B and Llama-3.1-405B) on FDM-Bench. A panel of FDM experts assess the models' responses to user queries in detail. Results indicate that closed-source models generally outperform open-source models in G-code anomaly detection, whereas Llama-3.1-405B demonstrates a slight advantage over other models in responding to user queries. These findings underscore FDM-Bench's potential as a foundational tool for advancing research on LLM capabilities in FDM.
Abstract:Smaller-scale Vision-Langauge Models (VLMs) often claim to perform on par with larger models in general-domain visual grounding and question-answering benchmarks while offering advantages in computational efficiency and storage. However, their ability to handle rare objects, which fall into the long tail of data distributions, is less understood. To rigorously evaluate this aspect, we introduce the "Uncontextualized Uncommon Objects" (UOUO) benchmark. This benchmark focuses on systematically testing VLMs with both large and small parameter counts on rare and specialized objects. Our comprehensive analysis reveals that while smaller VLMs maintain competitive performance on common datasets, they significantly underperform on tasks involving uncommon objects. We also propose an advanced, scalable pipeline for data collection and cleaning, ensuring the UOUO benchmark provides high-quality, challenging instances. These findings highlight the need to consider long-tail distributions when assessing the true capabilities of VLMs.
Abstract:Ultrasonic welding machines play a critical role in the lithium battery industry, facilitating the bonding of batteries with conductors. Ensuring high-quality welding is vital, making tool condition monitoring systems essential for early-stage quality control. However, existing monitoring methods face challenges in cost, downtime, and adaptability. In this paper, we present WeldMon, an affordable ultrasonic welding machine condition monitoring system that utilizes a custom data acquisition system and a data analysis pipeline designed for real-time analysis. Our classification algorithm combines auto-generated features and hand-crafted features, achieving superior cross-validation accuracy (95.8% on average over all testing tasks) compared to the state-of-the-art method (92.5%) in condition classification tasks. Our data augmentation approach alleviates the concept drift problem, enhancing tool condition classification accuracy by 8.3%. All algorithms run locally, requiring only 385 milliseconds to process data for each welding cycle. We deploy WeldMon and a commercial system on an actual ultrasonic welding machine, performing a comprehensive comparison. Our findings highlight the potential for developing cost-effective, high-performance, and reliable tool condition monitoring systems.