Abstract:Multivariate time series have many applications, from healthcare and meteorology to life science. Although deep learning models have shown excellent predictive performance for time series, they have been criticised for being "black-boxes" or non-interpretable. This paper proposes a novel modular neural network model for multivariate time series prediction that is interpretable by construction. A recurrent neural network learns the temporal dependencies in the data while an attention-based feature selection component selects the most relevant features and suppresses redundant features used in the learning of the temporal dependencies. A modular deep network is trained from the selected features independently to show the users how features influence outcomes, making the model interpretable. Experimental results show that this approach can outperform state-of-the-art interpretable Neural Additive Models (NAM) and variations thereof in both regression and classification of time series tasks, achieving a predictive performance that is comparable to the top non-interpretable methods for time series, LSTM and XGBoost.
Abstract:Machine learning offers great potential for automated prediction of post-stroke symptoms and their response to rehabilitation. Major challenges for this endeavour include the very high dimensionality of neuroimaging data, the relatively small size of the datasets available for learning, and how to effectively combine neuroimaging and tabular data (e.g. demographic information and clinical characteristics). This paper evaluates several solutions based on two strategies. The first is to use 2D images that summarise MRI scans. The second is to select key features that improve classification accuracy. Additionally, we introduce the novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interest extracted from MRIs, with symbolic representations of tabular data. We evaluate a series of CNN architectures (both 2D and a 3D) that are trained on different representations of MRI and tabular data, to predict whether a composite measure of post-stroke spoken picture description ability is in the aphasic or non-aphasic range. MRI and tabular data were acquired from 758 English speaking stroke survivors who participated in the PLORAS study. The classification accuracy for a baseline logistic regression was 0.678 for lesion size alone, rising to 0.757 and 0.813 when initial symptom severity and recovery time were successively added. The highest classification accuracy 0.854 was observed when 8 regions-of-interest was extracted from each MRI scan and combined with lesion size, initial severity and recovery time in a 2D Residual Neural Network.Our findings demonstrate how imaging and tabular data can be combined for high post-stroke classification accuracy, even when the dataset is small in machine learning terms. We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital scanners.
Abstract:Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
Abstract:We propose neural-symbolic integration for abstract concept explanation and interactive learning. Neural-symbolic integration and explanation allow users and domain-experts to learn about the data-driven decision making process of large neural models. The models are queried using a symbolic logic language. Interaction with the user then confirms or rejects a revision of the neural model using logic-based constraints that can be distilled into the model architecture. The approach is illustrated using the Logic Tensor Network framework alongside Concept Activation Vectors and applied to a Convolutional Neural Network.
Abstract:The idea of representing symbolic knowledge in connectionist systems has been a long-standing endeavour which has attracted much attention recently with the objective of combining machine learning and scalable sound reasoning. Early work has shown a correspondence between propositional logic and symmetrical neural networks which nevertheless did not scale well with the number of variables and whose training regime was inefficient. In this paper, we introduce Logical Boltzmann Machines (LBM), a neurosymbolic system that can represent any propositional logic formula in strict disjunctive normal form. We prove equivalence between energy minimization in LBM and logical satisfiability thus showing that LBM is capable of sound reasoning. We evaluate reasoning empirically to show that LBM is capable of finding all satisfying assignments of a class of logical formulae by searching fewer than 0.75% of the possible (approximately 1 billion) assignments. We compare learning in LBM with a symbolic inductive logic programming system, a state-of-the-art neurosymbolic system and a purely neural network-based system, achieving better learning performance in five out of seven data sets.
Abstract:Last years have been characterized by an upsurge of opaque automatic decision support systems, such as Deep Neural Networks (DNNs). Although they have great generalization and prediction skills, their functioning does not allow obtaining detailed explanations of their behaviour. As opaque machine learning models are increasingly being employed to make important predictions in critical environments, the danger is to create and use decisions that are not justifiable or legitimate. Therefore, there is a general agreement on the importance of endowing machine learning models with explainability. The reason is that EXplainable Artificial Intelligence (XAI) techniques can serve to verify and certify model outputs and enhance them with desirable notions such as trustworthiness, accountability, transparency and fairness. This tutorial is meant to be the go-to handbook for any audience with a computer science background aiming at getting intuitive insights of machine learning models, accompanied with straight, fast, and intuitive explanations out of the box. We believe that these methods provide a valuable contribution for applying XAI techniques in their particular day-to-day models, datasets and use-cases. Figure \ref{fig:Flowchart} acts as a flowchart/map for the reader and should help him to find the ideal method to use according to his type of data. The reader will find a description of the proposed method as well as an example of use and a Python notebook that he can easily modify as he pleases in order to apply it to his own case of application.
Abstract:Detecting money laundering in gambling is becoming increasingly challenging for the gambling industry as consumers migrate to online channels. Whilst increasingly stringent regulations have been applied over the years to prevent money laundering in gambling, despite this, online gambling is still a channel for criminals to spend proceeds from crime. Complementing online gambling's growth more concerns are raised to its effects compared with gambling in traditional, physical formats, as it might introduce higher levels of problem gambling or fraudulent behaviour due to its nature of immediate interaction with online gambling experience. However, in most cases the main issue when organisations try to tackle those areas is the absence of high quality data. Since fraud detection related issues face the significant problem of the class imbalance, in this paper we propose a novel system based on Generative Adversarial Networks (GANs) for generating synthetic data in order to train a supervised classifier. Our framework Synthetic Data Generation GAN (SDG-GAN), manages to outperformed density based over-sampling methods and improve the classification performance of benchmarks datasets and the real world gambling fraud dataset.
Abstract:In many applications, it is important to be able to explain the decisions of machine learning systems. An increasingly popular approach has been to seek to provide \emph{counterfactual instance explanations}. These specify close possible worlds in which, contrary to the facts, a person receives their desired decision from the machine learning system. This paper will draw on literature from the philosophy of science to argue that a satisfactory explanation must consist of both counterfactual instances and a causal equation (or system of equations) that support the counterfactual instances. We will show that counterfactual instances by themselves explain little. We will further illustrate how explainable AI methods that provide both causal equations and counterfactual instances can successfully explain machine learning predictions.
Abstract:A novel explainable AI method called CLEAR Image is introduced in this paper. CLEAR Image is based on the view that a satisfactory explanation should be contrastive, counterfactual and measurable. CLEAR Image explains an image's classification probability by contrasting the image with a corresponding image generated automatically via adversarial learning. This enables both salient segmentation and perturbations that faithfully determine each segment's importance. CLEAR Image was successfully applied to a medical imaging case study where it outperformed methods such as Grad-CAM and LIME by an average of 27% using a novel pointing game metric. CLEAR Image excels in identifying cases of "causal overdetermination" where there are multiple patches in an image, any one of which is sufficient by itself to cause the classification probability to be close to one.
Abstract:Artificial Intelligence agents are required to learn from their surroundings and to reason about the knowledge that has been learned in order to make decisions. While state-of-the-art learning from data typically uses sub-symbolic distributed representations, reasoning is normally useful at a higher level of abstraction with the use of a first-order logic language for knowledge representation. As a result, attempts at combining symbolic AI and neural computation into neural-symbolic systems have been on the increase. In this paper, we present Logic Tensor Networks (LTN), a neurosymbolic formalism and computational model that supports learning and reasoning through the introduction of a many-valued, end-to-end differentiable first-order logic called Real Logic as a representation language for deep learning. We show that LTN provides a uniform language for the specification and the computation of several AI tasks such as data clustering, multi-label classification, relational learning, query answering, semi-supervised learning, regression and embedding learning. We implement and illustrate each of the above tasks with a number of simple explanatory examples using TensorFlow 2. Keywords: Neurosymbolic AI, Deep Learning and Reasoning, Many-valued Logic.