Abstract:Variational quantum algorithms (VQAs) combining the advantages of parameterized quantum circuits and classical optimizers, promise practical quantum applications in the Noisy Intermediate-Scale Quantum era. The performance of VQAs heavily depends on the optimization method. Compared with gradient-free and ordinary gradient descent methods, the quantum natural gradient (QNG), which mirrors the geometric structure of the parameter space, can achieve faster convergence and avoid local minima more easily, thereby reducing the cost of circuit executions. We utilized a fully programmable photonic chip to experimentally estimate the QNG in photonics for the first time. We obtained the dissociation curve of the He-H$^+$ cation and achieved chemical accuracy, verifying the outperformance of QNG optimization on a photonic device. Our work opens up a vista of utilizing QNG in photonics to implement practical near-term quantum applications.
Abstract:Imitation learning (IL) enables agents to mimic expert behaviors. Most previous IL techniques focus on precisely imitating one policy through mass demonstrations. However, in many applications, what humans require is the ability to perform various tasks directly through a few demonstrations of corresponding tasks, where the agent would meet many unexpected changes when deployed. In this scenario, the agent is expected to not only imitate the demonstration but also adapt to unforeseen environmental changes. This motivates us to propose a new topic called imitator learning (ItorL), which aims to derive an imitator module that can on-the-fly reconstruct the imitation policies based on very limited expert demonstrations for different unseen tasks, without any extra adjustment. In this work, we focus on imitator learning based on only one expert demonstration. To solve ItorL, we propose Demo-Attention Actor-Critic (DAAC), which integrates IL into a reinforcement-learning paradigm that can regularize policies' behaviors in unexpected situations. Besides, for autonomous imitation policy building, we design a demonstration-based attention architecture for imitator policy that can effectively output imitated actions by adaptively tracing the suitable states in demonstrations. We develop a new navigation benchmark and a robot environment for \topic~and show that DAAC~outperforms previous imitation methods \textit{with large margins} both on seen and unseen tasks.
Abstract:Quantum Generative Adversarial Networks (QGANs), an intersection of quantum computing and machine learning, have attracted widespread attention due to their potential advantages over classical analogs. However, in the current era of Noisy Intermediate-Scale Quantum (NISQ) computing, it is essential to investigate whether QGANs can perform learning tasks on near-term quantum devices usually affected by noise and even defects. In this Letter, using a programmable silicon quantum photonic chip, we experimentally demonstrate the QGAN model in photonics for the first time, and investigate the effects of noise and defects on its performance. Our results show that QGANs can generate high-quality quantum data with a fidelity higher than 90\%, even under conditions where up to half of the generator's phase shifters are damaged, or all of the generator and discriminator's phase shifters are subjected to phase noise up to 0.04$\pi$. Our work sheds light on the feasibility of implementing QGANs on NISQ-era quantum hardware.
Abstract:We propose a high-rate scheme for discretely-modulated continuous-variable quantum key distribution (DM CVQKD) using quantum machine learning technologies, which divides the whole CVQKD system into three parts, i.e., the initialization part that is used for training and estimating quantum classifier, the prediction part that is used for generating highly correlated raw keys, and the data-postprocessing part that generates the final secret key string shared by Alice and Bob. To this end, a low-complexity quantum k-nearest neighbor (QkNN) classifier is designed for predicting the lossy discretely-modulated coherent states (DMCSs) at Bob's side. The performance of the proposed QkNN-based CVQKD especially in terms of machine learning metrics and complexity is analyzed, and its theoretical security is proved by using semi-definite program (SDP) method. Numerical simulation shows that the secret key rate of our proposed scheme is explicitly superior to the existing DM CVQKD protocols, and it can be further enhanced with the increase of modulation variance.
Abstract:The development of artificial intelligent composition has resulted in the increasing popularity of machine-generated pieces, with frequent copyright disputes consequently emerging. There is an insufficient amount of research on the judgement of artificial and machine-generated works; the creation of a method to identify and distinguish these works is of particular importance. Starting from the essence of the music, the article constructs a music-rule-identifying algorithm through extracting modes, which will identify the stability of the mode of machine-generated music, to judge whether it is artificial intelligent. The evaluation datasets used are provided by the Conference on Sound and Music Technology(CSMT). Experimental results demonstrate the algorithm to have a successful distinguishing ability between datasets with different source distributions. The algorithm will also provide some technological reference to the benign development of the music copyright and artificial intelligent music.
Abstract:We propose a hybrid quantum-classical algorithm for quantum state tomography. Given an unknown quantum state, a quantum machine learning algorithm is used to maximize the fidelity between the output of a variational quantum circuit and this state. The number of parameters of the variational quantum circuit grows linearly with the number of qubits and the circuit depth. After that, a subsequent classical algorithm is used to reconstruct the unknown quantum state. We demonstrate our method by performing numerical simulations to reconstruct the ground state of a one-dimensional quantum spin chain, using a variational quantum circuit simulator. Our method is suitable for near-term quantum computing platforms, and could be used for relatively large-scale quantum state tomography for experimentally relevant quantum states.