Abstract:Over the recent years, the advancements in deep face recognition have fueled an increasing demand for large and diverse datasets. Nevertheless, the authentic data acquired to create those datasets is typically sourced from the web, which, in many cases, can lead to significant privacy issues due to the lack of explicit user consent. Furthermore, obtaining a demographically balanced, large dataset is even more difficult because of the natural imbalance in the distribution of images from different demographic groups. In this paper, we investigate the impact of demographically balanced authentic and synthetic data, both individually and in combination, on the accuracy and fairness of face recognition models. Initially, several generative methods were used to balance the demographic representations of the corresponding synthetic datasets. Then a state-of-the-art face encoder was trained and evaluated using (combinations of) synthetic and authentic images. Our findings emphasized two main points: (i) the increased effectiveness of training data generated by diffusion-based models in enhancing accuracy, whether used alone or combined with subsets of authentic data, and (ii) the minimal impact of incorporating balanced data from pre-trained generative methods on fairness (in nearly all tested scenarios using combined datasets, fairness scores remained either unchanged or worsened, even when compared to unbalanced authentic datasets). Source code and data are available at \url{https://cutt.ly/AeQy1K5G} for reproducibility.
Abstract:Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
Abstract:Recent advances in deep face recognition have spurred a growing demand for large, diverse, and manually annotated face datasets. Acquiring authentic, high-quality data for face recognition has proven to be a challenge, primarily due to privacy concerns. Large face datasets are primarily sourced from web-based images, lacking explicit user consent. In this paper, we examine whether and how synthetic face data can be used to train effective face recognition models with reduced reliance on authentic images, thereby mitigating data collection concerns. First, we explored the performance gap among recent state-of-the-art face recognition models, trained with synthetic data only and authentic (scarce) data only. Then, we deepened our analysis by training a state-of-the-art backbone with various combinations of synthetic and authentic data, gaining insights into optimizing the limited use of the latter for verification accuracy. Finally, we assessed the effectiveness of data augmentation approaches on synthetic and authentic data, with the same goal in mind. Our results highlighted the effectiveness of FR trained on combined datasets, particularly when combined with appropriate augmentation techniques.
Abstract:Despite the widespread adoption of face recognition technology around the world, and its remarkable performance on current benchmarks, there are still several challenges that must be covered in more detail. This paper offers an overview of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first international challenge aiming to explore the use of synthetic data in face recognition to address existing limitations in the technology. Specifically, the FRCSyn Challenge targets concerns related to data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in challenging scenarios, including significant age disparities between enrollment and testing, pose variations, and occlusions. The results achieved in the FRCSyn Challenge, together with the proposed benchmark, contribute significantly to the application of synthetic data to improve face recognition technology.
Abstract:Law enforcement regularly faces the challenge of ranking suspects from their facial images. Deep face models aid this process but frequently introduce biases that disproportionately affect certain demographic segments. While bias investigation is common in domains like job candidate ranking, the field of forensic face rankings remains underexplored. In this paper, we propose a novel experimental framework, encompassing six state-of-the-art face encoders and two public data sets, designed to scrutinize the extent to which demographic groups suffer from biases in exposure in the context of forensic face rankings. Through comprehensive experiments that cover both re-identification and identification tasks, we show that exposure biases within this domain are far from being countered, demanding attention towards establishing ad-hoc policies and corrective measures. The source code is available at https://github.com/atzoriandrea/ijcb2023-unfair-face-rankings
Abstract:Face biometrics are playing a key role in making modern smart city applications more secure and usable. Commonly, the recognition threshold of a face recognition system is adjusted based on the degree of security for the considered use case. The likelihood of a match can be for instance decreased by setting a high threshold in case of a payment transaction verification. Prior work in face recognition has unfortunately showed that error rates are usually higher for certain demographic groups. These disparities have hence brought into question the fairness of systems empowered with face biometrics. In this paper, we investigate the extent to which disparities among demographic groups change under different security levels. Our analysis includes ten face recognition models, three security thresholds, and six demographic groups based on gender and ethnicity. Experiments show that the higher the security of the system is, the higher the disparities in usability among demographic groups are. Compelling unfairness issues hence exist and urge countermeasures in real-world high-stakes environments requiring severe security levels.
Abstract:In this paper, we propose a novel explanatory framework aimed to provide a better understanding of how face recognition models perform as the underlying data characteristics (protected attributes: gender, ethnicity, age; non-protected attributes: facial hair, makeup, accessories, face orientation and occlusion, image distortion, emotions) on which they are tested change. With our framework, we evaluate ten state-of-the-art face recognition models, comparing their fairness in terms of security and usability on two data sets, involving six groups based on gender and ethnicity. We then analyze the impact of image characteristics on models performance. Our results show that trends appearing in a single-attribute analysis disappear or reverse when multi-attribute groups are considered, and that performance disparities are also related to non-protected attributes. Source code: https://cutt.ly/2XwRLiA.