Abstract:Electrooculography (EOG) is an electrophysiological signal that determines the human eye orientation and is therefore widely used in Human Tracking Interfaces (HCI). The purpose of this project is to develop a communication method for quadriplegic patients using EOG signals aimed at text and voice generation. The system consists of 3D eye movement tracking embedded using a custom-built prototype to measure the eyeball's left-right and up-down movements. The ESP32 board, which has a set of parameters to convert the data into content displayed on LCDs and MP3 players, is used to capture and process the signal. helps people by facilitating more natural and efficient symptom expression. The blink system will be able to incorporate face masks and more eye tests as it continues to develop. Even if it might work, more research and clinical trials are needed to evaluate the system's usefulness and ensure that it performs as planned in real-world scenarios. With this project, assistive technology will make significant progress and improve the lives of many who suffer from severe motor impairments.
Abstract:With recent advancements in industrial robots, educating students in new technologies and preparing them for the future is imperative. However, access to industrial robots for teaching poses challenges, such as the high cost of acquiring these robots, the safety of the operator and the robot, and complicated training material. This paper proposes two low-cost platforms built using open-source tools like Robot Operating System (ROS) and its latest version ROS 2 to help students learn and test algorithms on remotely connected industrial robots. Universal Robotics (UR5) arm and a custom mobile rover were deployed in different life-size testbeds, a greenhouse, and a warehouse to create an Autonomous Agricultural Harvester System (AAHS) and an Autonomous Warehouse Management System (AWMS). These platforms were deployed for a period of 7 months and were tested for their efficacy with 1,433 and 1,312 students, respectively. The hardware used in AAHS and AWMS was controlled remotely for 160 and 355 hours, respectively, by students over a period of 3 months.
Abstract:In today's digital world, streaming platforms offer a vast array of movies, making it hard for users to find content matching their preferences. This paper explores integrating real time data from popular movie websites using advanced HTML scraping techniques and APIs. It also incorporates a recommendation system trained on a static Kaggle dataset, enhancing the relevance and freshness of suggestions. By combining content based filtering, collaborative filtering, and a hybrid model, we create a system that utilizes both historical and real time data for more personalized suggestions. Our methodology shows that incorporating dynamic data not only boosts user satisfaction but also aligns recommendations with current viewing trends.
Abstract:Navigating unmanned aerial vehicles in environments where GPS signals are unavailable poses a compelling and intricate challenge. This challenge is further heightened when dealing with Nano Aerial Vehicles (NAVs) due to their compact size, payload restrictions, and computational capabilities. This paper proposes an approach for localization using off-board computing, an off-board monocular camera, and modified open-source algorithms. The proposed method uses three parallel proportional-integral-derivative controllers on the off-board computer to provide velocity corrections via wireless communication, stabilizing the NAV in a custom-controlled environment. Featuring a 3.1cm localization error and a modest setup cost of 50 USD, this approach proves optimal for environments where cost considerations are paramount. It is especially well-suited for applications like teaching drone control in academic institutions, where the specified error margin is deemed acceptable. Various applications are designed to validate the proposed technique, such as landing the NAV on a moving ground vehicle, path planning in a 3D space, and localizing multi-NAVs. The created package is openly available at https://github.com/simmubhangu/eyantra_drone to foster research in this field.
Abstract:In today's world, stress is a big problem that affects people's health and happiness. More and more people are feeling stressed out, which can lead to lots of health issues like breathing problems, feeling overwhelmed, heart attack, diabetes, etc. This work endeavors to forecast stress and non-stress occurrences among college students by applying various machine learning algorithms: Decision Trees, Random Forest, Support Vector Machines, AdaBoost, Naive Bayes, Logistic Regression, and K-nearest Neighbors. The primary objective of this work is to leverage a research study to predict and mitigate stress and non-stress based on the collected questionnaire dataset. We conducted a workshop with the primary goal of studying the stress levels found among the students. This workshop was attended by Approximately 843 students aged between 18 to 21 years old. A questionnaire was given to the students validated under the guidance of the experts from the All India Institute of Medical Sciences (AIIMS) Raipur, Chhattisgarh, India, on which our dataset is based. The survey consists of 28 questions, aiming to comprehensively understand the multidimensional aspects of stress, including emotional well-being, physical health, academic performance, relationships, and leisure. This work finds that Support Vector Machines have a maximum accuracy for Stress, reaching 95\%. The study contributes to a deeper understanding of stress determinants. It aims to improve college student's overall quality of life and academic success, addressing the multifaceted nature of stress.
Abstract:We introduce a novel framework that learns a dynamic neural radiance field (NeRF) for full-body talking humans from monocular videos. Prior work represents only the body pose or the face. However, humans communicate with their full body, combining body pose, hand gestures, as well as facial expressions. In this work, we propose TalkinNeRF, a unified NeRF-based network that represents the holistic 4D human motion. Given a monocular video of a subject, we learn corresponding modules for the body, face, and hands, that are combined together to generate the final result. To capture complex finger articulation, we learn an additional deformation field for the hands. Our multi-identity representation enables simultaneous training for multiple subjects, as well as robust animation under completely unseen poses. It can also generalize to novel identities, given only a short video as input. We demonstrate state-of-the-art performance for animating full-body talking humans, with fine-grained hand articulation and facial expressions.
Abstract:This paper considers the scenario in which there are multiple institutions, each with a limited capacity for candidates, and candidates, each with preferences over the institutions. A central entity evaluates the utility of each candidate to the institutions, and the goal is to select candidates for each institution in a way that maximizes utility while also considering the candidates' preferences. The paper focuses on the setting in which candidates are divided into multiple groups and the observed utilities of candidates in some groups are biased--systematically lower than their true utilities. The first result is that, in these biased settings, prior algorithms can lead to selections with sub-optimal true utility and significant discrepancies in the fraction of candidates from each group that get their preferred choices. Subsequently, an algorithm is presented along with proof that it produces selections that achieve near-optimal group fairness with respect to preferences while also nearly maximizing the true utility under distributional assumptions. Further, extensive empirical validation of these results in real-world and synthetic settings, in which the distributional assumptions may not hold, are presented.
Abstract:The k-SERVER problem is one of the most prominent problems in online algorithms with several variants and extensions. However, simplifying assumptions like instantaneous server movements and zero service time has hitherto limited its applicability to real-world problems. In this paper, we introduce a realistic generalization of k-SERVER without such assumptions - the k-FOOD problem, where requests with source-destination locations and an associated pickup time window arrive in an online fashion, and each has to be served by exactly one of the available k servers. The k-FOOD problem offers the versatility to model a variety of real-world use cases such as food delivery, ride sharing, and quick commerce. Moreover, motivated by the need for fairness in online platforms, we introduce the FAIR k-FOOD problem with the max-min objective. We establish that both k-FOOD and FAIR k-FOOD problems are strongly NP-hard and develop an optimal offline algorithm that arises naturally from a time-expanded flow network. Subsequently, we propose an online algorithm DOC4FOOD involving virtual movements of servers to the nearest request location. Experiments on a real-world food-delivery dataset, alongside synthetic datasets, establish the efficacy of the proposed algorithm against state-of-the-art fair food delivery algorithms.
Abstract:Biases with respect to socially-salient attributes of individuals have been well documented in evaluation processes used in settings such as admissions and hiring. We view such an evaluation process as a transformation of a distribution of the true utility of an individual for a task to an observed distribution and model it as a solution to a loss minimization problem subject to an information constraint. Our model has two parameters that have been identified as factors leading to biases: the resource-information trade-off parameter in the information constraint and the risk-averseness parameter in the loss function. We characterize the distributions that arise from our model and study the effect of the parameters on the observed distribution. The outputs of our model enrich the class of distributions that can be used to capture variation across groups in the observed evaluations. We empirically validate our model by fitting real-world datasets and use it to study the effect of interventions in a downstream selection task. These results contribute to an understanding of the emergence of bias in evaluation processes and provide tools to guide the deployment of interventions to mitigate biases.
Abstract:The Separating Hyperplane theorem is a fundamental result in Convex Geometry with myriad applications. Our first result, Random Separating Hyperplane Theorem (RSH), is a strengthening of this for polytopes. $\rsh$ asserts that if the distance between $a$ and a polytope $K$ with $k$ vertices and unit diameter in $\Re^d$ is at least $\delta$, where $\delta$ is a fixed constant in $(0,1)$, then a randomly chosen hyperplane separates $a$ and $K$ with probability at least $1/poly(k)$ and margin at least $\Omega \left(\delta/\sqrt{d} \right)$. An immediate consequence of our result is the first near optimal bound on the error increase in the reduction from a Separation oracle to an Optimization oracle over a polytope. RSH has algorithmic applications in learning polytopes. We consider a fundamental problem, denoted the ``Hausdorff problem'', of learning a unit diameter polytope $K$ within Hausdorff distance $\delta$, given an optimization oracle for $K$. Using RSH, we show that with polynomially many random queries to the optimization oracle, $K$ can be approximated within error $O(\delta)$. To our knowledge this is the first provable algorithm for the Hausdorff Problem. Building on this result, we show that if the vertices of $K$ are well-separated, then an optimization oracle can be used to generate a list of points, each within Hausdorff distance $O(\delta)$ of $K$, with the property that the list contains a point close to each vertex of $K$. Further, we show how to prune this list to generate a (unique) approximation to each vertex of the polytope. We prove that in many latent variable settings, e.g., topic modeling, LDA, optimization oracles do exist provided we project to a suitable SVD subspace. Thus, our work yields the first efficient algorithm for finding approximations to the vertices of the latent polytope under the well-separatedness assumption.