Abstract:With the growth of high-quality data and advancement in visual pre-training paradigms, Video Foundation Models (VFMs) have made significant progress recently, demonstrating their remarkable performance on traditional video understanding benchmarks. However, the existing benchmarks (e.g. Kinetics) and their evaluation protocols are often limited by relatively poor diversity, high evaluation costs, and saturated performance metrics. In this paper, we build a comprehensive benchmark suite to address these issues, namely VideoEval. Specifically, we establish the Video Task Adaption Benchmark (VidTAB) and the Video Embedding Benchmark (VidEB) from two perspectives: evaluating the task adaptability of VFMs under few-shot conditions and assessing their representation power by directly applying to downstream tasks. With VideoEval, we conduct a large-scale study on 20 popular open-source vision foundation models. Our study reveals some insightful findings on VFMs: 1) overall, current VFMs exhibit weak generalization across diverse tasks, 2) increasing video data, whether labeled or weakly-labeled video-text pairs, does not necessarily improve task performance, 3) the effectiveness of some pre-training paradigms may not be fully validated in previous benchmarks, and 4) combining different pre-training paradigms can help improve the generalization capabilities. We believe this study serves as an important complement to the current evaluation for VFMs and offers valuable insights for the future research.
Abstract:In this paper, we present a new data-efficient voxel-based self-supervised learning method for event cameras. Our pre-training overcomes the limitations of previous methods, which either sacrifice temporal information by converting event sequences into 2D images for utilizing pre-trained image models or directly employ paired image data for knowledge distillation to enhance the learning of event streams. In order to make our pre-training data-efficient, we first design a semantic-uniform masking method to address the learning imbalance caused by the varying reconstruction difficulties of different regions in non-uniform data when using random masking. In addition, we ease the traditional hybrid masked modeling process by explicitly decomposing it into two branches, namely local spatio-temporal reconstruction and global semantic reconstruction to encourage the encoder to capture local correlations and global semantics, respectively. This decomposition allows our selfsupervised learning method to converge faster with minimal pre-training data. Compared to previous approaches, our self-supervised learning method does not rely on paired RGB images, yet enables simultaneous exploration of spatial and temporal cues in multiple scales. It exhibits excellent generalization performance and demonstrates significant improvements across various tasks with fewer parameters and lower computational costs.