Abstract:A light field camera can reconstruct 3D scenes using captured multi-focus images that contain rich spatial geometric information, enhancing applications in stereoscopic photography, virtual reality, and robotic vision. In this work, a state-of-the-art salient object detection model for multi-focus light field images, called LFSamba, is introduced to emphasize four main insights: (a) Efficient feature extraction, where SAM is used to extract modality-aware discriminative features; (b) Inter-slice relation modeling, leveraging Mamba to capture long-range dependencies across multiple focal slices, thus extracting implicit depth cues; (c) Inter-modal relation modeling, utilizing Mamba to integrate all-focus and multi-focus images, enabling mutual enhancement; (d) Weakly supervised learning capability, developing a scribble annotation dataset from an existing pixel-level mask dataset, establishing the first scribble-supervised baseline for light field salient object detection.https://github.com/liuzywen/LFScribble
Abstract:Current RGB-Thermal Video Object Detection (RGBT VOD) methods still depend on manually aligning data at the image level, which hampers its practical application in real-world scenarios since image pairs captured by multispectral sensors often differ in both fields of view and resolution. To address this limitation, we propose a Multi-modal Dynamic Local fusion Network (MDLNet) designed to handle unaligned RGBT image pairs. Specifically, our proposed Multi-modal Dynamic Local Fusion (MDLF) module includes a set of predefined boxes, each enhanced with random Gaussian noise to generate a dynamic box. Each box selects a local region from the original high-resolution RGB image. This region is then fused with the corresponding information from another modality and reinserted into the RGB. This method adapts to various data alignment scenarios by interacting with local features across different ranges. Simultaneously, we introduce a Cascaded Temporal Scrambler (CTS) within an end-to-end architecture. This module leverages consistent spatiotemporal information from consecutive frames to enhance the representation capability of the current frame while maintaining network efficiency. We have curated an open dataset called UVT-VOD2024 for unaligned RGBT VOD. It consists of 30,494 pairs of unaligned RGBT images captured directly from a multispectral camera. We conduct a comprehensive evaluation and comparison with MDLNet and state-of-the-art (SOTA) models, demonstrating the superior effectiveness of MDLNet. We will release our code and UVT-VOD2024 to the public for further research.
Abstract:Although most existing multi-modal salient object detection (SOD) methods demonstrate effectiveness through training models from scratch, the limited multi-modal data hinders these methods from reaching optimality. In this paper, we propose a novel framework to explore and exploit the powerful feature representation and zero-shot generalization ability of the pre-trained Segment Anything Model (SAM) for multi-modal SOD. Despite serving as a recent vision fundamental model, driving the class-agnostic SAM to comprehend and detect salient objects accurately is non-trivial, especially in challenging scenes. To this end, we develop \underline{SAM} with se\underline{m}antic f\underline{e}ature fu\underline{s}ion guidanc\underline{e} (Sammese), which incorporates multi-modal saliency-specific knowledge into SAM to adapt SAM to multi-modal SOD tasks. However, it is difficult for SAM trained on single-modal data to directly mine the complementary benefits of multi-modal inputs and comprehensively utilize them to achieve accurate saliency prediction.To address these issues, we first design a multi-modal complementary fusion module to extract robust multi-modal semantic features by integrating information from visible and thermal or depth image pairs. Then, we feed the extracted multi-modal semantic features into both the SAM image encoder and mask decoder for fine-tuning and prompting, respectively. Specifically, in the image encoder, a multi-modal adapter is proposed to adapt the single-modal SAM to multi-modal information. In the mask decoder, a semantic-geometric prompt generation strategy is proposed to produce corresponding embeddings with various saliency cues. Extensive experiments on both RGB-D and RGB-T SOD benchmarks show the effectiveness of the proposed framework.
Abstract:RGB and Thermal (RGBT) Salient Object Detection (SOD) aims to achieve high-quality saliency prediction by exploiting the complementary information of visible and thermal image pairs, which are initially captured in an unaligned manner. However, existing methods are tailored for manually aligned image pairs, which are labor-intensive, and directly applying these methods to original unaligned image pairs could significantly degrade their performance. In this paper, we make the first attempt to address RGBT SOD for initially captured RGB and thermal image pairs without manual alignment. Specifically, we propose a Semantics-guided Asymmetric Correlation Network (SACNet) that consists of two novel components: 1) an asymmetric correlation module utilizing semantics-guided attention to model cross-modal correlations specific to unaligned salient regions; 2) an associated feature sampling module to sample relevant thermal features according to the corresponding RGB features for multi-modal feature integration. In addition, we construct a unified benchmark dataset called UVT2000, containing 2000 RGB and thermal image pairs directly captured from various real-world scenes without any alignment, to facilitate research on alignment-free RGBT SOD. Extensive experiments on both aligned and unaligned datasets demonstrate the effectiveness and superior performance of our method. The dataset and code are available at https://github.com/Angknpng/SACNet.
Abstract:Multi-modal salient object detection (MSOD) aims to boost saliency detection performance by integrating visible sources with depth or thermal infrared ones. Existing methods generally design different fusion schemes to handle certain issues or challenges. Although these fusion schemes are effective at addressing specific issues or challenges, they may struggle to handle multiple complex challenges simultaneously. To solve this problem, we propose a novel adaptive fusion bank that makes full use of the complementary benefits from a set of basic fusion schemes to handle different challenges simultaneously for robust MSOD. We focus on handling five major challenges in MSOD, namely center bias, scale variation, image clutter, low illumination, and thermal crossover or depth ambiguity. The fusion bank proposed consists of five representative fusion schemes, which are specifically designed based on the characteristics of each challenge, respectively. The bank is scalable, and more fusion schemes could be incorporated into the bank for more challenges. To adaptively select the appropriate fusion scheme for multi-modal input, we introduce an adaptive ensemble module that forms the adaptive fusion bank, which is embedded into hierarchical layers for sufficient fusion of different source data. Moreover, we design an indirect interactive guidance module to accurately detect salient hollow objects via the skip integration of high-level semantic information and low-level spatial details. Extensive experiments on three RGBT datasets and seven RGBD datasets demonstrate that the proposed method achieves the outstanding performance compared to the state-of-the-art methods. The code and results are available at https://github.com/Angknpng/LAFB.
Abstract:Segment Anything Model (SAM) has recently achieved amazing results in the field of natural image segmentation. However, it is not effective for medical image segmentation, owing to the large domain gap between natural and medical images. In this paper, we mainly focus on ultrasound image segmentation. As we know that it is very difficult to train a foundation model for ultrasound image data due to the lack of large-scale annotated ultrasound image data. To address these issues, in this paper, we develop a novel Breast Ultrasound SAM Adapter, termed Breast Ultrasound Segment Anything Model (BUSSAM), which migrates the SAM to the field of breast ultrasound image segmentation by using the adapter technique. To be specific, we first design a novel CNN image encoder, which is fully trained on the BUS dataset. Our CNN image encoder is more lightweight, and focuses more on features of local receptive field, which provides the complementary information to the ViT branch in SAM. Then, we design a novel Cross-Branch Adapter to allow the CNN image encoder to fully interact with the ViT image encoder in SAM module. Finally, we add both of the Position Adapter and the Feature Adapter to the ViT branch to fine-tune the original SAM. The experimental results on AMUBUS and BUSI datasets demonstrate that our proposed model outperforms other medical image segmentation models significantly. Our code will be available at: https://github.com/bscs12/BUSSAM.
Abstract:Ultrasound video-based breast lesion segmentation provides a valuable assistance in early breast lesion detection and treatment. However, existing works mainly focus on lesion segmentation based on ultrasound breast images which usually can not be adapted well to obtain desirable results on ultrasound videos. The main challenge for ultrasound video-based breast lesion segmentation is how to exploit the lesion cues of both intra-frame and inter-frame simultaneously. To address this problem, we propose a novel Spatial-Temporal Progressive Fusion Network (STPFNet) for video based breast lesion segmentation problem. The main aspects of the proposed STPFNet are threefold. First, we propose to adopt a unified network architecture to capture both spatial dependences within each ultrasound frame and temporal correlations between different frames together for ultrasound data representation. Second, we propose a new fusion module, termed Multi-Scale Feature Fusion (MSFF), to fuse spatial and temporal cues together for lesion detection. MSFF can help to determine the boundary contour of lesion region to overcome the issue of lesion boundary blurring. Third, we propose to exploit the segmentation result of previous frame as the prior knowledge to suppress the noisy background and learn more robust representation. In particular, we introduce a new publicly available ultrasound video breast lesion segmentation dataset, termed UVBLS200, which is specifically dedicated to breast lesion segmentation. It contains 200 videos, including 80 videos of benign lesions and 120 videos of malignant lesions. Experiments on the proposed dataset demonstrate that the proposed STPFNet achieves better breast lesion detection performance than state-of-the-art methods.
Abstract:Single-modal object re-identification (ReID) faces great challenges in maintaining robustness within complex visual scenarios. In contrast, multi-modal object ReID utilizes complementary information from diverse modalities, showing great potentials for practical applications. However, previous methods may be easily affected by irrelevant backgrounds and usually ignore the modality gaps. To address above issues, we propose a novel learning framework named \textbf{EDITOR} to select diverse tokens from vision Transformers for multi-modal object ReID. We begin with a shared vision Transformer to extract tokenized features from different input modalities. Then, we introduce a Spatial-Frequency Token Selection (SFTS) module to adaptively select object-centric tokens with both spatial and frequency information. Afterwards, we employ a Hierarchical Masked Aggregation (HMA) module to facilitate feature interactions within and across modalities. Finally, to further reduce the effect of backgrounds, we propose a Background Consistency Constraint (BCC) and an Object-Centric Feature Refinement (OCFR). They are formulated as two new loss functions, which improve the feature discrimination with background suppression. As a result, our framework can generate more discriminative features for multi-modal object ReID. Extensive experiments on three multi-modal ReID benchmarks verify the effectiveness of our methods. The code is available at https://github.com/924973292/EDITOR.
Abstract:Multi-spectral object Re-identification (ReID) aims to retrieve specific objects by leveraging complementary information from different image spectra. It delivers great advantages over traditional single-spectral ReID in complex visual environment. However, the significant distribution gap among different image spectra poses great challenges for effective multi-spectral feature representations. In addition, most of current Transformer-based ReID methods only utilize the global feature of class tokens to achieve the holistic retrieval, ignoring the local discriminative ones. To address the above issues, we step further to utilize all the tokens of Transformers and propose a cyclic token permutation framework for multi-spectral object ReID, dubbled TOP-ReID. More specifically, we first deploy a multi-stream deep network based on vision Transformers to preserve distinct information from different image spectra. Then, we propose a Token Permutation Module (TPM) for cyclic multi-spectral feature aggregation. It not only facilitates the spatial feature alignment across different image spectra, but also allows the class token of each spectrum to perceive the local details of other spectra. Meanwhile, we propose a Complementary Reconstruction Module (CRM), which introduces dense token-level reconstruction constraints to reduce the distribution gap across different image spectra. With the above modules, our proposed framework can generate more discriminative multi-spectral features for robust object ReID. Extensive experiments on three ReID benchmarks (i.e., RGBNT201, RGBNT100 and MSVR310) verify the effectiveness of our methods. The code is available at https://github.com/924973292/TOP-ReID.
Abstract:Existing single-modal and multi-modal salient object detection (SOD) methods focus on designing specific architectures tailored for their respective tasks. However, developing completely different models for different tasks leads to labor and time consumption, as well as high computational and practical deployment costs. In this paper, we make the first attempt to address both single-modal and multi-modal SOD in a unified framework called UniSOD. Nevertheless, assigning appropriate strategies to modality variable inputs is challenging. To this end, UniSOD learns modality-aware prompts with task-specific hints through adaptive prompt learning, which are plugged into the proposed pre-trained baseline SOD model to handle corresponding tasks, while only requiring few learnable parameters compared to training the entire model. Each modality-aware prompt is generated from a switchable prompt generation block, which performs structural switching solely relied on single-modal and multi-modal inputs. UniSOD achieves consistent performance improvement on 14 benchmark datasets for RGB, RGB-D, and RGB-T SOD, which demonstrates that our method effectively and efficiently unifies single-modal and multi-modal SOD tasks.