Abstract:Current RGB-Thermal Video Object Detection (RGBT VOD) methods still depend on manually aligning data at the image level, which hampers its practical application in real-world scenarios since image pairs captured by multispectral sensors often differ in both fields of view and resolution. To address this limitation, we propose a Multi-modal Dynamic Local fusion Network (MDLNet) designed to handle unaligned RGBT image pairs. Specifically, our proposed Multi-modal Dynamic Local Fusion (MDLF) module includes a set of predefined boxes, each enhanced with random Gaussian noise to generate a dynamic box. Each box selects a local region from the original high-resolution RGB image. This region is then fused with the corresponding information from another modality and reinserted into the RGB. This method adapts to various data alignment scenarios by interacting with local features across different ranges. Simultaneously, we introduce a Cascaded Temporal Scrambler (CTS) within an end-to-end architecture. This module leverages consistent spatiotemporal information from consecutive frames to enhance the representation capability of the current frame while maintaining network efficiency. We have curated an open dataset called UVT-VOD2024 for unaligned RGBT VOD. It consists of 30,494 pairs of unaligned RGBT images captured directly from a multispectral camera. We conduct a comprehensive evaluation and comparison with MDLNet and state-of-the-art (SOTA) models, demonstrating the superior effectiveness of MDLNet. We will release our code and UVT-VOD2024 to the public for further research.
Abstract:Segment Anything Model (SAM) has recently achieved amazing results in the field of natural image segmentation. However, it is not effective for medical image segmentation, owing to the large domain gap between natural and medical images. In this paper, we mainly focus on ultrasound image segmentation. As we know that it is very difficult to train a foundation model for ultrasound image data due to the lack of large-scale annotated ultrasound image data. To address these issues, in this paper, we develop a novel Breast Ultrasound SAM Adapter, termed Breast Ultrasound Segment Anything Model (BUSSAM), which migrates the SAM to the field of breast ultrasound image segmentation by using the adapter technique. To be specific, we first design a novel CNN image encoder, which is fully trained on the BUS dataset. Our CNN image encoder is more lightweight, and focuses more on features of local receptive field, which provides the complementary information to the ViT branch in SAM. Then, we design a novel Cross-Branch Adapter to allow the CNN image encoder to fully interact with the ViT image encoder in SAM module. Finally, we add both of the Position Adapter and the Feature Adapter to the ViT branch to fine-tune the original SAM. The experimental results on AMUBUS and BUSI datasets demonstrate that our proposed model outperforms other medical image segmentation models significantly. Our code will be available at: https://github.com/bscs12/BUSSAM.