Abstract:To support software developers in understanding and maintaining programs, various automatic (source) code summarization techniques have been proposed to generate a concise natural language summary (i.e., comment) for a given code snippet. Recently, the emergence of large language models (LLMs) has led to a great boost in the performance of code-related tasks. In this paper, we undertake a systematic and comprehensive study on code summarization in the era of LLMs, which covers multiple aspects involved in the workflow of LLM-based code summarization. Specifically, we begin by examining prevalent automated evaluation methods for assessing the quality of summaries generated by LLMs and find that the results of the GPT-4 evaluation method are most closely aligned with human evaluation. Then, we explore the effectiveness of five prompting techniques (zero-shot, few-shot, chain-of-thought, critique, and expert) in adapting LLMs to code summarization tasks. Contrary to expectations, advanced prompting techniques may not outperform simple zero-shot prompting. Next, we investigate the impact of LLMs' model settings (including top\_p and temperature parameters) on the quality of generated summaries. We find the impact of the two parameters on summary quality varies by the base LLM and programming language, but their impacts are similar. Moreover, we canvass LLMs' abilities to summarize code snippets in distinct types of programming languages. The results reveal that LLMs perform suboptimally when summarizing code written in logic programming languages compared to other language types. Finally, we unexpectedly find that CodeLlama-Instruct with 7B parameters can outperform advanced GPT-4 in generating summaries describing code implementation details and asserting code properties. We hope that our findings can provide a comprehensive understanding of code summarization in the era of LLMs.
Abstract:Programming language understanding and representation (a.k.a code representation learning) has always been a hot and challenging task in software engineering. It aims to apply deep learning techniques to produce numerical representations of the source code features while preserving its semantics. These representations can be used for facilitating subsequent code-related tasks. The abstract syntax tree (AST), a fundamental code feature, illustrates the syntactic information of the source code and has been widely used in code representation learning. However, there is still a lack of systematic and quantitative evaluation of how well AST-based code representation facilitates subsequent code-related tasks. In this paper, we first conduct a comprehensive empirical study to explore the effectiveness of the AST-based code representation in facilitating follow-up code-related tasks. To do so, we compare the performance of models trained with code token sequence (Token for short) based code representation and AST-based code representation on three popular types of code-related tasks. Surprisingly, the overall quantitative statistical results demonstrate that models trained with AST-based code representation consistently perform worse across all three tasks compared to models trained with Token-based code representation. Our further quantitative analysis reveals that models trained with AST-based code representation outperform models trained with Token-based code representation in certain subsets of samples across all three tasks. We also conduct comprehensive experiments to evaluate and reveal the impact of the choice of AST parsing/preprocessing/encoding methods on AST-based code representation and subsequent code-related tasks. Our study provides future researchers with detailed guidance on how to select solutions at each stage to fully exploit AST.
Abstract:Image classification is one of the most fundamental tasks in Computer Vision. In practical applications, the datasets are usually not as abundant as those in the laboratory and simulation, which is always called as Data Hungry. How to extract the information of data more completely and effectively is very important. Therefore, an Adaptive Data Augmentation Framework based on the tensor T-product Operator is proposed in this paper, to triple one image data to be trained and gain the result from all these three images together with only less than 0.1% increase in the number of parameters. At the same time, this framework serves the functions of column image embedding and global feature intersection, enabling the model to obtain information in not only spatial but frequency domain, and thus improving the prediction accuracy of the model. Numerical experiments have been designed for several models, and the results demonstrate the effectiveness of this adaptive framework. Numerical experiments show that our data augmentation framework can improve the performance of original neural network model by 2%, which provides competitive results to state-of-the-art methods.
Abstract:To support software developers in understanding and maintaining programs, various automatic code summarization techniques have been proposed to generate a concise natural language comment for a given code snippet. Recently, the emergence of large language models (LLMs) has led to a great boost in the performance of natural language processing tasks. Among them, ChatGPT is the most popular one which has attracted wide attention from the software engineering community. However, it still remains unclear how ChatGPT performs in (automatic) code summarization. Therefore, in this paper, we focus on evaluating ChatGPT on a widely-used Python dataset called CSN-Python and comparing it with several state-of-the-art (SOTA) code summarization models. Specifically, we first explore an appropriate prompt to guide ChatGPT to generate in-distribution comments. Then, we use such a prompt to ask ChatGPT to generate comments for all code snippets in the CSN-Python test set. We adopt three widely-used metrics (including BLEU, METEOR, and ROUGE-L) to measure the quality of the comments generated by ChatGPT and SOTA models (including NCS, CodeBERT, and CodeT5). The experimental results show that in terms of BLEU and ROUGE-L, ChatGPT's code summarization performance is significantly worse than all three SOTA models. We also present some cases and discuss the advantages and disadvantages of ChatGPT in code summarization. Based on the findings, we outline several open challenges and opportunities in ChatGPT-based code summarization.