Abstract:While Global Navigation Satellite System (GNSS) is often used to provide global positioning if available, its intermittency and/or inaccuracy calls for fusion with other sensors. In this paper, we develop a novel GNSS-Visual-Inertial Navigation System (GVINS) that fuses visual, inertial, and raw GNSS measurements within the square-root inverse sliding window filtering (SRI-SWF) framework in a tightly coupled fashion, which thus is termed SRI-GVINS. In particular, for the first time, we deeply fuse the GNSS pseudorange, Doppler shift, single-differenced pseudorange, and double-differenced carrier phase measurements, along with the visual-inertial measurements. Inherited from the SRI-SWF, the proposed SRI-GVINS gains significant numerical stability and computational efficiency over the start-of-the-art methods. Additionally, we propose to use a filter to sequentially initialize the reference frame transformation till converges, rather than collecting measurements for batch optimization. We also perform online calibration of GNSS-IMU extrinsic parameters to mitigate the possible extrinsic parameter degradation. The proposed SRI-GVINS is extensively evaluated on our own collected UAV datasets and the results demonstrate that the proposed method is able to suppress VIO drift in real-time and also show the effectiveness of online GNSS-IMU extrinsic calibration. The experimental validation on the public datasets further reveals that the proposed SRI-GVINS outperforms the state-of-the-art methods in terms of both accuracy and efficiency.
Abstract:The memorization effect of deep neural network (DNN) plays a pivotal role in many state-of-the-art label-noise learning methods. To exploit this property, the early stopping trick, which stops the optimization at the early stage of training, is usually adopted. Current methods generally decide the early stopping point by considering a DNN as a whole. However, a DNN can be considered as a composition of a series of layers, and we find that the latter layers in a DNN are much more sensitive to label noise, while their former counterparts are quite robust. Therefore, selecting a stopping point for the whole network may make different DNN layers antagonistically affected each other, thus degrading the final performance. In this paper, we propose to separate a DNN into different parts and progressively train them to address this problem. Instead of the early stopping, which trains a whole DNN all at once, we initially train former DNN layers by optimizing the DNN with a relatively large number of epochs. During training, we progressively train the latter DNN layers by using a smaller number of epochs with the preceding layers fixed to counteract the impact of noisy labels. We term the proposed method as progressive early stopping (PES). Despite its simplicity, compared with the early stopping, PES can help to obtain more promising and stable results. Furthermore, by combining PES with existing approaches on noisy label training, we achieve state-of-the-art performance on image classification benchmarks.
Abstract:The label noise transition matrix $T$, reflecting the probabilities that true labels flip into noisy ones, is of vital importance to model label noise and design statistically consistent classifiers. The traditional transition matrix is limited to model closed-set label noise, where noisy training data has true class labels within the noisy label set. It is unfitted to employ such a transition matrix to model open-set label noise, where some true class labels are outside the noisy label set. Thus when considering a more realistic situation, i.e., both closed-set and open-set label noise occurs, existing methods will undesirably give biased solutions. Besides, the traditional transition matrix is limited to model instance-independent label noise, which may not perform well in practice. In this paper, we focus on learning under the mixed closed-set and open-set label noise. We address the aforementioned issues by extending the traditional transition matrix to be able to model mixed label noise, and further to the cluster-dependent transition matrix to better approximate the instance-dependent label noise in real-world applications. We term the proposed transition matrix as the cluster-dependent extended transition matrix. An unbiased estimator (i.e., extended $T$-estimator) has been designed to estimate the cluster-dependent extended transition matrix by only exploiting the noisy data. Comprehensive synthetic and real experiments validate that our method can better model the mixed label noise, following its more robust performance than the prior state-of-the-art label-noise learning methods.