Abstract:Geolocation is now a vital aspect of modern life, offering numerous benefits but also presenting serious privacy concerns. The advent of large vision-language models (LVLMs) with advanced image-processing capabilities introduces new risks, as these models can inadvertently reveal sensitive geolocation information. This paper presents the first in-depth study analyzing the challenges posed by traditional deep learning and LVLM-based geolocation methods. Our findings reveal that LVLMs can accurately determine geolocations from images, even without explicit geographic training. To address these challenges, we introduce \tool{}, an innovative framework that significantly enhances image-based geolocation accuracy. \tool{} employs a systematic chain-of-thought (CoT) approach, mimicking human geoguessing strategies by carefully analyzing visual and contextual cues such as vehicle types, architectural styles, natural landscapes, and cultural elements. Extensive testing on a dataset of 50,000 ground-truth data points shows that \tool{} outperforms both traditional models and human benchmarks in accuracy. It achieves an impressive average score of 4550.5 in the GeoGuessr game, with an 85.37\% win rate, and delivers highly precise geolocation predictions, with the closest distances as accurate as 0.3 km. Furthermore, our study highlights issues related to dataset integrity, leading to the creation of a more robust dataset and a refined framework that leverages LVLMs' cognitive capabilities to improve geolocation precision. These findings underscore \tool{}'s superior ability to interpret complex visual data, the urgent need to address emerging security vulnerabilities posed by LVLMs, and the importance of responsible AI development to ensure user privacy protection.
Abstract:Large Language Models (LLMs) have become instrumental in advancing software engineering (SE) tasks, showcasing their efficacy in code understanding and beyond. Like traditional SE tools, open-source collaboration is key in realising the excellent products. However, with AI models, the essential need is in data. The collaboration of these AI-based SE models hinges on maximising the sources of high-quality data. However, data especially of high quality, often holds commercial or sensitive value, making it less accessible for open-source AI-based SE projects. This reality presents a significant barrier to the development and enhancement of AI-based SE tools within the software engineering community. Therefore, researchers need to find solutions for enabling open-source AI-based SE models to tap into resources by different organisations. Addressing this challenge, our position paper investigates one solution to facilitate access to diverse organizational resources for open-source AI models, ensuring privacy and commercial sensitivities are respected. We introduce a governance framework centered on federated learning (FL), designed to foster the joint development and maintenance of open-source AI code models while safeguarding data privacy and security. Additionally, we present guidelines for developers on AI-based SE tool collaboration, covering data requirements, model architecture, updating strategies, and version control. Given the significant influence of data characteristics on FL, our research examines the effect of code data heterogeneity on FL performance.
Abstract:Large Language Models (LLMs) have become increasingly popular for their advanced text generation capabilities across various domains. However, like any software, they face security challenges, including the risk of 'jailbreak' attacks that manipulate LLMs to produce prohibited content. A particularly underexplored area is the Multilingual Jailbreak attack, where malicious questions are translated into various languages to evade safety filters. Currently, there is a lack of comprehensive empirical studies addressing this specific threat. To address this research gap, we conducted an extensive empirical study on Multilingual Jailbreak attacks. We developed a novel semantic-preserving algorithm to create a multilingual jailbreak dataset and conducted an exhaustive evaluation on both widely-used open-source and commercial LLMs, including GPT-4 and LLaMa. Additionally, we performed interpretability analysis to uncover patterns in Multilingual Jailbreak attacks and implemented a fine-tuning mitigation method. Our findings reveal that our mitigation strategy significantly enhances model defense, reducing the attack success rate by 96.2%. This study provides valuable insights into understanding and mitigating Multilingual Jailbreak attacks.
Abstract:Large Language Models (LLMs), like ChatGPT, have demonstrated vast potential but also introduce challenges related to content constraints and potential misuse. Our study investigates three key research questions: (1) the number of different prompt types that can jailbreak LLMs, (2) the effectiveness of jailbreak prompts in circumventing LLM constraints, and (3) the resilience of ChatGPT against these jailbreak prompts. Initially, we develop a classification model to analyze the distribution of existing prompts, identifying ten distinct patterns and three categories of jailbreak prompts. Subsequently, we assess the jailbreak capability of prompts with ChatGPT versions 3.5 and 4.0, utilizing a dataset of 3,120 jailbreak questions across eight prohibited scenarios. Finally, we evaluate the resistance of ChatGPT against jailbreak prompts, finding that the prompts can consistently evade the restrictions in 40 use-case scenarios. The study underscores the importance of prompt structures in jailbreaking LLMs and discusses the challenges of robust jailbreak prompt generation and prevention.